yolov5源码+yolov5n.pt、yolov5s.pt文件整合

上传者: 67105081 | 上传时间: 2024-10-16 20:33:13 | 文件大小: 17.28MB | 文件类型: ZIP
YOLOv5是一种高效的目标检测模型,源自亚利桑那州立大学的 Ultralytics 团队。这个模型在计算机视觉领域被广泛使用,因为它能够快速地在图像中检测出多种对象,同时保持相当高的精度。YOLO(You Only Look Once)系列自2016年首次提出以来,经历了多次迭代,而YOLOv5是该系列的最新版本。 标题"yolov5源码+yolov5n.pt、yolov5s.pt文件整合"表明这是一个包含YOLOv5模型源代码和预训练权重的资源包。`yolov5n.pt`和`yolov5s.pt`是两种不同配置的YOLOv5模型的预训练权重文件。`yolov5n`通常代表轻量级网络,适用于计算资源有限的环境,而`yolov5s`则是一个稍大一些的模型,通常提供更好的性能但需要更多的计算资源。 描述中的"适合外网访问不了的使用"意味着这个资源包对于那些无法直接从Ultralytics的GitHub仓库下载或者由于网络限制的人特别有用。用户可以离线获取完整的YOLOv5实现,包括源代码和预训练模型,从而进行目标检测任务。 标签"软件/插件 yolov5 目标检测"揭示了这个资源的主要应用领域。YOLOv5可以被视为一个软件工具,它通过加载`pt`权重文件,配合源代码,能够在不同的平台上执行目标检测。这里的“插件”可能指的是它可以集成到其他软件或系统中,以实现自动化的目标检测功能。 压缩包内的文件`yolov5-7.0`可能是指YOLOv5的第7个版本源代码,这通常包含了模型的Python实现,模型结构定义,训练脚本,以及相关的数据处理工具等。用户可以解压此文件,根据提供的文档和示例,学习如何运行模型进行预测,训练自己的数据集,或者调整模型参数以优化性能。 总结一下,YOLOv5是一个先进的目标检测框架,`yolov5n.pt`和`yolov5s.pt`是不同规模的预训练模型权重,可用于不同需求的场景。这个资源包提供了一种离线获取YOLOv5完整组件的方式,包括源代码和预训练模型,方便用户在无法访问外网时进行目标检测工作。对于想要在计算机视觉项目中实施目标检测的开发者来说,这是一个非常有价值的资源。

文件下载

资源详情

[{"title":"( 146 个子文件 17.28MB ) yolov5源码+yolov5n.pt、yolov5s.pt文件整合","children":[{"title":"setup.cfg <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.39KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":"Dockerfile-arm64 <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"Dockerfile-cpu <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":".dockerignore <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 100.49KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 52.58KB </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 41.88KB </span>","children":null,"spread":false},{"title":"bus.jpg <span style='color:#111;'> 476.01KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 164.99KB </span>","children":null,"spread":false},{"title":"optimizer_config.json <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 36.46KB </span>","children":null,"spread":false},{"title":"README_cn.md <span style='color:#111;'> 27.72KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.60KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.55KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.39KB </span>","children":null,"spread":false},{"title":"CODE_OF_CONDUCT.md <span style='color:#111;'> 5.11KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 693B </span>","children":null,"spread":false},{"title":"SECURITY.md <span style='color:#111;'> 359B </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.12MB </span>","children":null,"spread":false},{"title":"yolov5n.pt <span style='color:#111;'> 3.87MB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 54.28KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 45.66KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 40.49KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 33.74KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 32.74KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 30.81KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 27.58KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 26.38KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 24.69KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 23.32KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 19.81KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 18.29KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 17.35KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 16.72KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 16.61KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 15.95KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 14.66KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.29KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 13.75KB </span>","children":null,"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 13.47KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 11.22KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 8.42KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 7.86KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"clearml_utils.py <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 6.50KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 6.24KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"hpo.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 4.82KB </span>","children":null,"spread":false},{"title":"comet_utils.py <span style='color:#111;'> 4.64KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.22KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.55KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"sweep.py <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 368B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"get_imagenet.sh <span style='color:#111;'> 1.63KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 640B </span>","children":null,"spread":false},{"title":"get_coco128.sh <span style='color:#111;'> 618B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 1.50KB </span>","children":null,"spread":false},{"title":"additional_requirements.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"ImageNet.yaml <span style='color:#111;'> 18.43KB </span>","children":null,"spread":false},{"title":"Objects365.yaml <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false},{"title":"xView.yaml <span style='color:#111;'> 5.05KB </span>","children":null,"spread":false},{"title":"VOC.yaml <span style='color:#111;'> 3.41KB </span>","children":null,"spread":false},{"title":"anchors.yaml <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"VisDrone.yaml <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"Argoverse.yaml <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"coco.yaml <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"sweep.yaml <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"SKU-110K.yaml <span style='color:#111;'> 2.29KB </span>","children":null,"spread":false},{"title":"yolov5-p7.yaml <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"GlobalWheat2020.yaml <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明