【医学影像分析】3D-CT影像的肺结节检测(LUNA16数据集).zip

上传者: 65898266 | 上传时间: 2024-02-23 11:55:03 | 文件大小: 9.6MB | 文件类型: ZIP
今夕何夕 【医学影像分析】3D-CT影像的肺结节检测(LUNA16数据集).zip

文件下载

资源详情

[{"title":"( 54 个子文件 9.6MB ) 【医学影像分析】3D-CT影像的肺结节检测(LUNA16数据集).zip","children":[{"title":"3D-Lung-nodules-detection-master","children":[{"title":"utils.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"prediction.csv <span style='color:#111;'> 6.03KB </span>","children":null,"spread":false},{"title":"data_detector.py <span style='color:#111;'> 18.90KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 6.80KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 12.44KB </span>","children":null,"spread":false},{"title":"net_classifier.py <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"test_detect.py <span style='color:#111;'> 3.56KB </span>","children":null,"spread":false},{"title":"config_submit.py <span style='color:#111;'> 680B </span>","children":null,"spread":false},{"title":"labels_extract.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"img","children":[{"title":"EG.png <span style='color:#111;'> 95.90KB </span>","children":null,"spread":false},{"title":"EG1.png <span style='color:#111;'> 73.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"net_detector.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"ss.md <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"split_combine.py <span style='color:#111;'> 3.59KB </span>","children":null,"spread":false},{"title":"detection result demo.ipynb <span style='color:#111;'> 77.83KB </span>","children":null,"spread":false},{"title":"master <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"work","children":[{"title":"labels.csv <span style='color:#111;'> 58.12KB </span>","children":null,"spread":false},{"title":"annotations.csv <span style='color:#111;'> 132.62KB </span>","children":null,"spread":false},{"title":"candidates.csv <span style='color:#111;'> 52.33MB </span>","children":null,"spread":false}],"spread":false},{"title":"data_classifier.py <span style='color:#111;'> 8.72KB </span>","children":null,"spread":false},{"title":"training","children":[{"title":"config_training.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"classifier","children":[{"title":"utils.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"net_classifier_4.py <span style='color:#111;'> 2.83KB </span>","children":null,"spread":false},{"title":"adapt_ckpt.py <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"data_detector.py <span style='color:#111;'> 17.53KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 12.44KB </span>","children":null,"spread":false},{"title":"trainval_classifier.py <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"trainval_detector.py <span style='color:#111;'> 5.22KB </span>","children":null,"spread":false},{"title":"net_detector_3.py <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"split_combine.py <span style='color:#111;'> 3.08KB </span>","children":null,"spread":false},{"title":"data_classifier.py <span style='color:#111;'> 8.74KB </span>","children":null,"spread":false},{"title":"valsplit.npy <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"net_classifier_3.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":".gitignore <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"prepare.py <span style='color:#111;'> 18.11KB </span>","children":null,"spread":false},{"title":"detector","children":[{"title":"utils.py <span style='color:#111;'> 10.35KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 12.89KB </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 12.44KB </span>","children":null,"spread":false},{"title":"res18.py <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"res_pool.py <span style='color:#111;'> 3.90KB </span>","children":null,"spread":false},{"title":"split_combine.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"data.py <span style='color:#111;'> 18.13KB </span>","children":null,"spread":false},{"title":"valsplit.npy <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 1.82KB </span>","children":null,"spread":false},{"title":"results","children":[{"title":".gitignore <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"run_training.sh <span style='color:#111;'> 1.21KB </span>","children":null,"spread":false}],"spread":false},{"title":"dicom2raw.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"preprocessing","children":[{"title":"__init__.py <span style='color:#111;'> 40B </span>","children":null,"spread":false},{"title":"full_prep.py <span style='color:#111;'> 5.93KB </span>","children":null,"spread":false},{"title":"step1.py <span style='color:#111;'> 11.24KB </span>","children":null,"spread":false},{"title":"AddSegmentation.asv <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false}],"spread":false},{"title":"README.md <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"test_classifier.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明