数模专题之高维统计降维附程序和数据

上传者: 55027982 | 上传时间: 2021-08-20 01:30:03 | 文件大小: 12.72MB | 文件类型: RAR
数模专题之高维统计降维附程序和数据

文件下载

资源详情

[{"title":"( 36 个子文件 12.72MB ) 数模专题之高维统计降维附程序和数据","children":[{"title":"高维统计降维","children":[{"title":"高维统计降维","children":[{"title":"数学建模暑期高维降维.pdf <span style='color:#111;'> 812.08KB </span>","children":null,"spread":false},{"title":"备选程序.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"参考文献","children":[{"title":"Sure Independence Screening for Ultra-High Dimensional.pdf <span style='color:#111;'> 401.63KB </span>","children":null,"spread":false},{"title":"High dimensional variable selection via tilting.pdf <span style='color:#111;'> 1.10MB </span>","children":null,"spread":false},{"title":"Model-free feature screening for ultrahigh dimensional data.pdf <span style='color:#111;'> 235.25KB </span>","children":null,"spread":false},{"title":"Forward Regression for Ultra-High Dimensional.pdf <span style='color:#111;'> 214.60KB </span>","children":null,"spread":false},{"title":"Model-Free Feature Screening for Ultrahigh Dimensional Discriminant Analysis.pdf <span style='color:#111;'> 168.90KB </span>","children":null,"spread":false},{"title":"sliced inverse regression for dimension reduction.pdf <span style='color:#111;'> 1.75MB </span>","children":null,"spread":false},{"title":"Feature screening via distance correlation learning.pdf <span style='color:#111;'> 178.33KB </span>","children":null,"spread":false},{"title":"Entropy based model free feature screening for ultrahigh dimensional multiclass classification.pdf <span style='color:#111;'> 383.87KB </span>","children":null,"spread":false},{"title":"The Kolmogorov filter for variable screening in high-dimensional binary classification (2013 Biometrika).pdf <span style='color:#111;'> 108.74KB </span>","children":null,"spread":false},{"title":"Feature Screening for Ultrahigh Dimensional categorical data with application.pdf <span style='color:#111;'> 115.59KB </span>","children":null,"spread":false}],"spread":true},{"title":"ncvreg package.pptx <span style='color:#111;'> 621.06KB </span>","children":null,"spread":false},{"title":"mnormt_1.5-3.zip <span style='color:#111;'> 94.38KB </span>","children":null,"spread":false},{"title":"数学建模暑期高维降维 (2).pdf <span style='color:#111;'> 943.48KB </span>","children":null,"spread":false},{"title":"高维降维主题--广告数据","children":[{"title":"备选程序.txt <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"训练集测试结果","children":[{"title":"001.svg <span style='color:#111;'> 2.13MB </span>","children":null,"spread":false}],"spread":true},{"title":"训练集测试结果.svg <span style='color:#111;'> 2.13MB </span>","children":null,"spread":false},{"title":"正确率.jpg <span style='color:#111;'> 135.86KB </span>","children":null,"spread":false},{"title":"要求.txt <span style='color:#111;'> 912B </span>","children":null,"spread":false},{"title":"正确率对比.svg <span style='color:#111;'> 802.77KB </span>","children":null,"spread":false},{"title":"正确率.svg <span style='color:#111;'> 999.96KB </span>","children":null,"spread":false},{"title":"iris_data.mat <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"高维数据降维作业:周卓彦、李柏非、韩雯格.docx <span style='color:#111;'> 3.57MB </span>","children":null,"spread":false},{"title":"train.csv <span style='color:#111;'> 22.61MB </span>","children":null,"spread":false},{"title":"K_filter.m <span style='color:#111;'> 3.18KB </span>","children":null,"spread":false},{"title":"main_RBF.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"farm-ads.csv <span style='color:#111;'> 12.75MB </span>","children":null,"spread":false},{"title":"正确率2.svg <span style='color:#111;'> 801.60KB </span>","children":null,"spread":false},{"title":"降维作业(1).docx <span style='color:#111;'> 3.08MB </span>","children":null,"spread":false},{"title":"预测值.jpg <span style='color:#111;'> 125.71KB </span>","children":null,"spread":false},{"title":"main_GRNN_PNN.m <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"SIR程序-切片逆回归","children":[{"title":"SIR程序使用小样(需补充修改后可使用).txt <span style='color:#111;'> 489B </span>","children":null,"spread":false},{"title":"SIRz.m <span style='color:#111;'> 2.12KB </span>","children":null,"spread":false},{"title":"example.m <span style='color:#111;'> 9.04KB </span>","children":null,"spread":false},{"title":"mvc.m <span style='color:#111;'> 517B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明