[{"title":"( 46 个子文件 5.35MB ) 使用一些最基本的机器学习模型来做回归预测(材料能耗问题).zip","children":[{"title":"content","children":[{"title":"evaluate","children":[{"title":"evaluate.py <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false}],"spread":true},{"title":"tools","children":[{"title":"__init__.py <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"visualization.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"sample.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 3.45KB </span>","children":null,"spread":false},{"title":"transformer.py <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"main.py <span style='color:#111;'> 717B </span>","children":null,"spread":false},{"title":"resource","children":[{"title":"__init__.py <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"AllCombinedResults-0800组.csv <span style='color:#111;'> 172.89KB </span>","children":null,"spread":false},{"title":"boston_housing.data <span style='color:#111;'> 47.93KB </span>","children":null,"spread":false},{"title":"AllCombinedResults-5000组.csv <span style='color:#111;'> 1.06MB </span>","children":null,"spread":false},{"title":"base-数据.csv <span style='color:#111;'> 216.00KB </span>","children":null,"spread":false},{"title":"AllCombinedResults-3000组.csv <span style='color:#111;'> 652.37KB </span>","children":null,"spread":false},{"title":"AllCombinedResults-0900组.csv <span style='color:#111;'> 194.44KB </span>","children":null,"spread":false},{"title":"30000-20230906.csv <span style='color:#111;'> 6.17MB </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"data_load.py <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false}],"spread":true},{"title":".idea","children":[{"title":"vcs.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 180B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 272B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 176B </span>","children":null,"spread":false},{"title":"encodings.xml <span style='color:#111;'> 406B </span>","children":null,"spread":false},{"title":"ML_project.iml <span style='color:#111;'> 610B </span>","children":null,"spread":false}],"spread":true},{"title":"result.png <span style='color:#111;'> 1.71MB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"__init__.py <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"loss","children":[{"title":"__init__.py <span style='color:#111;'> 207B </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"ann","children":[{"title":"__init__.py <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"ann_aeo.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"main.py <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"genetic_algorithm.py <span style='color:#111;'> 5.97KB </span>","children":null,"spread":false},{"title":"ann.py <span style='color:#111;'> 7.95KB </span>","children":null,"spread":false},{"title":"test.py <span style='color:#111;'> 5.75KB </span>","children":null,"spread":false},{"title":"ann_aeo_test.py <span style='color:#111;'> 2.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"optimizer","children":[{"title":"aeo.py <span style='color:#111;'> 7.53KB </span>","children":null,"spread":false},{"title":"Autoencoder.py <span style='color:#111;'> 732B </span>","children":null,"spread":false}],"spread":true},{"title":"nsga","children":[{"title":"__init__.py <span style='color:#111;'> 208B </span>","children":null,"spread":false},{"title":"nsga_2.py <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"svr","children":[{"title":"__init__.py <span style='color:#111;'> 209B </span>","children":null,"spread":false},{"title":"svr_grid_search.py <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"svr.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"svr_aeo.py <span style='color:#111;'> 3.42KB </span>","children":null,"spread":false},{"title":"svr_demo.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"config","children":[{"title":"log_config.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"config.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]