上传者: 45728381
|
上传时间: 2026-01-17 21:00:31
|
文件大小: 323.35MB
|
文件类型: PDF
点云配准(Point Cloud Registration)是 3D 计算机视觉中的重要任务之一,广泛应用于机器人定位与建图(SLAM)、3D 重建、医疗成像、自动驾驶等领域。点云配准的目标是通过几何变换将两组或多组点云对齐,形成统一的坐标系表示
点云配准是三维计算机视觉领域的一项核心技术,它在机器人定位与建图(SLAM)、三维重建、医疗成像、自动驾驶等多个领域拥有广泛的应用。点云配准的目的是将两组或多组三维点云数据通过几何变换对齐,使其能够在一个统一的坐标系中表示,这一过程对于3D视觉的其他处理步骤至关重要。经过多年的发展,点云配准算法已经形成了刚性配准和非刚性配准两大分支,而随着消费级RGBD设备的普及和开源软件库的快速发展,点云配准技术得到了广泛应用和不断优化。
本书系统梳理了近年来成熟的点云配准算法和工具,分为硬核技术篇和开源算法案例篇两大部分。硬核技术篇(第1~4章)涵盖了点云配准的基本概念、应用领域以及必要的数理知识,并深入探讨了配准过程中的关键步骤,如关键点提取、特征描述等,通过理论与实践相结合的方式展示经典算法。开源算法案例篇(第5~6章)则详细介绍了十几个开源的刚性与非刚性配准算法,从算法原理、理论基础、技术实现、应用案例及优缺点等多角度进行解析,并通过算法源码实现分析帮助读者彻底掌握算法细节。为提升读者的阅读体验和知识含量,本书随书附赠程序源代码、案例高清效果图和结果视频以及授课用PPT。
点云配准技术的发展历史长达40多年,随着点云获取成本的降低和开源软件库的兴起,该技术正在迎来更为广阔的应用前景。例如,Google的Project Tango、Intel的Realsense 3D以及奥比中光的Astra硬件产品等都在推动三维视觉技术的进步。开源软件库如PCL(Point Cloud Library)、Open3D、PyTorch3D和Jittor(计图)等则为研究者和开发者提供了强大的工具,助力三维视觉生态链的形成。
本书不仅适合科研人员和产品开发工程师参考,同时也适合作为计算机图形学、机器人学、遥感测量、虚拟现实、人机交互、CAD/CAM逆向工程等相关专业的高年级本科生、研究生的学习手册。作者团队集结了多位来自国内外知名研究机构和高校的专家,力求为读者带来全面且深入的技术指导和知识普及。
由于点云配准技术的跨学科特性,它涉及到计算机科学、图形学、人工智能、模式识别、几何计算、传感器学等多个领域的知识,这也意味着掌握点云配准技术需要具备相应的跨学科知识和技能。本书通过全面的技术介绍和丰富的案例分析,旨在帮助读者在理论、技术和应用层面深入理解和掌握点云配准的关键技术,从而快速将相关技术应用于产业界或在学术研究中快速提升水平。
点云配准技术是当前三维视觉领域不可或缺的技术之一,它的普及和优化对于推动相关行业的发展具有重要意义。随着技术的不断进步和应用的不断拓展,点云配准技术将为未来更加智能和自动化的社会做出重要贡献。