YOLOV5 + 双目相机实现三维测距(新版本)

上传者: 45077760 | 上传时间: 2024-12-31 09:58:22 | 文件大小: 40.38MB | 文件类型: RAR
YOLOV5与双目相机结合进行三维测距是一种现代计算机视觉技术的综合应用,它在自动驾驶、机器人导航、无人机避障等领域具有广泛的应用。在这个新版本中,我们看到YOLOV5,一个高效的实时目标检测框架,被用来增强双目相机的深度感知能力,从而实现更精确的三维空间测量。 我们需要理解YOLOV5的基本原理。YOLO(You Only Look Once)是基于深度学习的目标检测模型,以其快速和准确的特性而闻名。YOLOV5是对YOLO系列的最新改进,采用了更先进的网络结构和训练策略,如Mish激活函数、SPP-Block和自适应锚框等,使得模型在保持高效率的同时,提高了检测精度。 双目相机则通过同时拍摄同一场景的两个不同视角图像,利用视差原理计算出物体的深度信息。其工作流程包括特征匹配、立体匹配、深度图构建等步骤。双目相机的三维测距能力依赖于两个摄像头之间的基线距离以及对图像的精确处理。 将YOLOV5与双目相机结合,可以优化三维测距过程。YOLOV5可以快速定位和识别图像中的目标,然后双目相机计算这些目标在三维空间中的位置。通过YOLOV5的预处理,可以减少匹配错误,提高立体匹配的准确性,进一步提升深度估计的质量。 在"yolov5-6.1-stereo"这个压缩包中,很可能包含了以下内容: 1. **源代码**:用于整合YOLOV5与双目相机算法的Python代码,可能包括数据预处理、模型训练、目标检测和深度计算等部分。 2. **模型权重**:预训练的YOLOV5模型权重文件,用于直接应用或进一步微调。 3. **配置文件**:配置YOLOV5模型参数和双目相机设置的JSON或yaml文件。 4. **样例数据**:包含双目相机捕获的图像对,用于演示或测试系统的运行效果。 5. **文档**:可能有详细的使用指南、论文引用或技术说明,帮助理解实现细节和应用场景。 这样的结合不仅提升了三维测距的实时性,也增强了在复杂环境下的鲁棒性。在实际应用中,通过持续训练和优化,YOLOV5与双目相机的组合可以在各种环境下提供可靠的三维测量,为智能系统带来更准确的环境感知。

文件下载

资源详情

[{"title":"( 141 个子文件 40.38MB ) YOLOV5 + 双目相机实现三维测距(新版本)","children":[{"title":"setup.cfg <span style='color:#111;'> 1.24KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":".dockerignore <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":".gitattributes <span style='color:#111;'> 75B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"yolov5-6.1.iml <span style='color:#111;'> 601B </span>","children":null,"spread":false},{"title":"tutorial.ipynb <span style='color:#111;'> 55.14KB </span>","children":null,"spread":false},{"title":"bus.jpg <span style='color:#111;'> 476.01KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 164.99KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 34.30KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 15.47KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.57KB </span>","children":null,"spread":false},{"title":"CONTRIBUTING.md <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"PULL_REQUEST_TEMPLATE.md <span style='color:#111;'> 684B </span>","children":null,"spread":false},{"title":"a1.mp4 <span style='color:#111;'> 28.00MB </span>","children":null,"spread":false},{"title":"yolov5s.pt <span style='color:#111;'> 14.12MB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 45.01KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 35.63KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 33.07KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 32.44KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 27.15KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 26.51KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 20.17KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 20.04KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 18.57KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 14.61KB </span>","children":null,"spread":false},{"title":"detect-01.py <span style='color:#111;'> 14.09KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 13.73KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 13.53KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 13.24KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 11.46KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.39KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 7.45KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"stereo.py <span style='color:#111;'> 6.30KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 6.27KB </span>","children":null,"spread":false},{"title":"dianyuntu_yolo.py <span style='color:#111;'> 6.22KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 6.14KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.48KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.13KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"sweep.py <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.11KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"stereoconfig_040_2.py <span style='color:#111;'> 982B </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"datasets.cpython-37.pyc <span style='color:#111;'> 35.08KB </span>","children":null,"spread":false},{"title":"general.cpython-37.pyc <span style='color:#111;'> 30.84KB </span>","children":null,"spread":false},{"title":"common.cpython-37.pyc <span style='color:#111;'> 29.94KB </span>","children":null,"spread":false},{"title":"export.cpython-37.pyc <span style='color:#111;'> 21.67KB </span>","children":null,"spread":false},{"title":"plots.cpython-37.pyc <span style='color:#111;'> 18.03KB </span>","children":null,"spread":false},{"title":"yolo.cpython-37.pyc <span style='color:#111;'> 12.32KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-37.pyc <span style='color:#111;'> 11.85KB </span>","children":null,"spread":false},{"title":"metrics.cpython-37.pyc <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-37.pyc <span style='color:#111;'> 8.84KB </span>","children":null,"spread":false},{"title":"autoanchor.cpython-37.pyc <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"experimental.cpython-37.pyc <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"stereo.cpython-37.pyc <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"stereo.cpython-36.pyc <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false},{"title":"activations.cpython-37.pyc <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"dianyuntu_yolo.cpython-36.pyc <span style='color:#111;'> 4.44KB </span>","children":null,"spread":false},{"title":"dianyuntu_yolo.cpython-37.pyc <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"downloads.cpython-37.pyc <span style='color:#111;'> 3.93KB </span>","children":null,"spread":false},{"title":"stereoconfig_040_2.cpython-36.pyc <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"stereoconfig_Bud.cpython-36.pyc <span style='color:#111;'> 1.12KB </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"stereoconfig_040_2.cpython-37.pyc <span style='color:#111;'> 1012B </span>","children":null,"spread":false},{"title":"__init__.cpython-37.pyc <span style='color:#111;'> 147B </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"get_coco128.sh <span style='color:#111;'> 615B </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 523B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 926B </span>","children":null,"spread":false},{"title":"additional_requirements.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 6.95KB </span>","children":null,"spread":false},{"title":"Project_Default.xml <span style='color:#111;'> 902B </span>","children":null,"spread":false},{"title":"modules.xml <span style='color:#111;'> 279B </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false},{"title":"Objects365.yaml <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"xView.yaml <span style='color:#111;'> 4.98KB </span>","children":null,"spread":false},{"title":"VOC.yaml <span style='color:#111;'> 3.33KB </span>","children":null,"spread":false},{"title":"anchors.yaml <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"VisDrone.yaml <span style='color:#111;'> 2.88KB </span>","children":null,"spread":false},{"title":"Argoverse.yaml <span style='color:#111;'> 2.70KB </span>","children":null,"spread":false},{"title":"sweep.yaml <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"SKU-110K.yaml <span style='color:#111;'> 2.32KB </span>","children":null,"spread":false},{"title":"coco.yaml <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"yolov5-p7.yaml <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明