lssvm的葡萄酒较好分类效果.zip

上传者: 42232540 | 上传时间: 2021-05-24 12:51:24 | 文件大小: 42KB | 文件类型: ZIP
通过使用lssvm对葡萄酒数据集进行分类然后使用lssvm工具箱,哈哈。1) 同样是对原始对偶问题进行求解,但是通过求解一个线性方程组(优化目标中的线性约束导致的)来代替SVM中的QP问题(简化求解过程),对于高维输入空间中的分类以及回归任务同样适用;   2) 实质上是求解线性矩阵方程的过程,与高斯过程(Gaussian processes),正则化网络(regularization networks)和费雪判别分析(Fisher discriminant analysis)的核版本相结合;   3) 使用了稀疏近似(用来克服使用该算法时的弊端)与稳健回归(稳健统计);   4) 使用了贝叶斯推断(Bayesian inference);   5) 可以拓展到非监督学习中:核主成分分析(kernel PCA)或密度聚类;   6) 可以拓展到递归神经网络中。

文件下载

资源详情

[{"title":"( 26 个子文件 42KB ) lssvm的葡萄酒较好分类效果.zip","children":[{"title":"新建文件夹","children":[{"title":"postlssvm.m <span style='color:#111;'> 4.72KB </span>","children":null,"spread":false},{"title":"code_MOC.m <span style='color:#111;'> 548B </span>","children":null,"spread":false},{"title":"simlssvm.m <span style='color:#111;'> 6.26KB </span>","children":null,"spread":false},{"title":"wine.m <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"bp.m <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"code_OneVsOne.m <span style='color:#111;'> 576B </span>","children":null,"spread":false},{"title":"prelssvm.m <span style='color:#111;'> 6.17KB </span>","children":null,"spread":false},{"title":"trainlssvm.m <span style='color:#111;'> 8.50KB </span>","children":null,"spread":false},{"title":"desktop.ini <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"codedist_loss.m <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"initlssvm.m <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"MLP_kernel.m <span style='color:#111;'> 603B </span>","children":null,"spread":false},{"title":"untitled3.asv <span style='color:#111;'> 22.26KB </span>","children":null,"spread":false},{"title":"codedist_hamming.m <span style='color:#111;'> 753B </span>","children":null,"spread":false},{"title":"RBF_kernel.m <span style='color:#111;'> 1.08KB </span>","children":null,"spread":false},{"title":"codedist_bay.m <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"kernel_matrix.m <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"untitled3.fig <span style='color:#111;'> 10.03KB </span>","children":null,"spread":false},{"title":"lin_kernel.m <span style='color:#111;'> 529B </span>","children":null,"spread":false},{"title":"poly_kernel.m <span style='color:#111;'> 623B </span>","children":null,"spread":false},{"title":"untitled3.m <span style='color:#111;'> 22.26KB </span>","children":null,"spread":false},{"title":"kernel_matrix2.m <span style='color:#111;'> 795B </span>","children":null,"spread":false},{"title":"code_ECOC.m <span style='color:#111;'> 5.07KB </span>","children":null,"spread":false},{"title":"code_OneVsAll.m <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"lssvmMATLAB.m <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"code.m <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明