deeplabv3.rar

上传者: 41964545 | 上传时间: 2021-03-30 09:06:11 | 文件大小: 758.08MB | 文件类型: RAR
Pytorch+Deeplabv3实现CityScapes数据集训练与测试

文件下载

资源详情

[{"title":"( 62 个子文件 758.08MB ) deeplabv3.rar","children":[{"title":"deeplabv3","children":[{"title":"deeplabv3","children":[{"title":"evaluation","children":[{"title":"eval_on_val_for_metrics.py <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"eval_on_val.py <span style='color:#111;'> 3.65KB </span>","children":null,"spread":false}],"spread":true},{"title":"test_img.py <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"model","children":[{"title":"deeplabv3.py <span style='color:#111;'> 1.81KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"aspp.cpython-36.pyc <span style='color:#111;'> 2.95KB </span>","children":null,"spread":false},{"title":"deeplabv3.cpython-36.pyc <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"resnet.cpython-36.pyc <span style='color:#111;'> 6.82KB </span>","children":null,"spread":false}],"spread":true},{"title":"aspp.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"resnet.py <span style='color:#111;'> 9.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"datasets.py <span style='color:#111;'> 11.19KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"1.png <span style='color:#111;'> 2.29MB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"utils.py <span style='color:#111;'> 1.58KB </span>","children":null,"spread":false},{"title":"preprocess_data.py <span style='color:#111;'> 10.88KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"utils.cpython-36.pyc <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"random_code.py <span style='color:#111;'> 782B </span>","children":null,"spread":false}],"spread":true},{"title":"visualization","children":[{"title":"run_on_thn_seq.py <span style='color:#111;'> 4.15KB </span>","children":null,"spread":false},{"title":"run_on_seq.py <span style='color:#111;'> 4.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 9.99KB </span>","children":null,"spread":false},{"title":"training_logs","children":[{"title":"model_eval_seq","children":[{"title":"berlin_000005_000019_overlayed.png <span style='color:#111;'> 523.08KB </span>","children":null,"spread":false},{"title":"berlin_000000_000019.png <span style='color:#111;'> 737.79KB </span>","children":null,"spread":false},{"title":"berlin_000000_000019_overlayed.png <span style='color:#111;'> 527.95KB </span>","children":null,"spread":false},{"title":"berlin_000001_000019.png <span style='color:#111;'> 766.05KB </span>","children":null,"spread":false},{"title":"berlin_000004_000019_pred.png <span style='color:#111;'> 22.69KB </span>","children":null,"spread":false},{"title":"berlin_000002_000019_overlayed.png <span style='color:#111;'> 549.02KB </span>","children":null,"spread":false},{"title":"berlin_000003_000019_pred.png <span style='color:#111;'> 38.47KB </span>","children":null,"spread":false},{"title":"berlin_000005_000019.png <span style='color:#111;'> 747.63KB </span>","children":null,"spread":false},{"title":"berlin_000003_000019.png <span style='color:#111;'> 711.56KB </span>","children":null,"spread":false},{"title":".png <span style='color:#111;'> 106.86KB </span>","children":null,"spread":false},{"title":"checkpoints","children":null,"spread":false},{"title":"berlin_000001_000019_overlayed.png <span style='color:#111;'> 547.69KB </span>","children":null,"spread":false},{"title":"berlin_000002_000019.png <span style='color:#111;'> 759.82KB </span>","children":null,"spread":false},{"title":"berlin_000004_000019_overlayed.png <span style='color:#111;'> 507.81KB </span>","children":null,"spread":false},{"title":"berlin_000002_000019_pred.png <span style='color:#111;'> 41.19KB </span>","children":null,"spread":false},{"title":"_overlayed.png <span style='color:#111;'> 79.78KB </span>","children":null,"spread":false},{"title":"stuttgart_00_combined.avi <span style='color:#111;'> 866.90KB </span>","children":null,"spread":false},{"title":"berlin_000004_000019.png <span style='color:#111;'> 731.79KB </span>","children":null,"spread":false},{"title":"stuttgart_01_combined.avi <span style='color:#111;'> 866.90KB </span>","children":null,"spread":false},{"title":"_pred.png <span style='color:#111;'> 9.13KB </span>","children":null,"spread":false},{"title":"stuttgart_02_combined.avi <span style='color:#111;'> 866.90KB </span>","children":null,"spread":false},{"title":"berlin_000000_000019_pred.png <span style='color:#111;'> 27.10KB </span>","children":null,"spread":false},{"title":"berlin_000005_000019_pred.png <span style='color:#111;'> 19.00KB </span>","children":null,"spread":false},{"title":"berlin_000001_000019_pred.png <span style='color:#111;'> 25.66KB </span>","children":null,"spread":false},{"title":"berlin_000003_000019_overlayed.png <span style='color:#111;'> 506.60KB </span>","children":null,"spread":false}],"spread":false},{"title":"model_1","children":[{"title":"epoch_losses_train.pkl <span style='color:#111;'> 260B </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"model_1_epoch_1.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_6.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_9.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_2.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_5.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_7.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_4.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_8.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false},{"title":"model_1_epoch_3.pth <span style='color:#111;'> 58.50MB </span>","children":null,"spread":false}],"spread":false},{"title":"epoch_losses_train.png <span style='color:#111;'> 20.28KB </span>","children":null,"spread":false},{"title":"epoch_losses_val.png <span style='color:#111;'> 21.65KB </span>","children":null,"spread":false},{"title":"epoch_losses_val.pkl <span style='color:#111;'> 260B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__pycache__","children":[{"title":"datasets.cpython-36.pyc <span style='color:#111;'> 6.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"pretrained_models","children":[{"title":"model_13_2_2_2_epoch_580.pth <span style='color:#111;'> 58.49MB </span>","children":null,"spread":false},{"title":"resnet","children":[{"title":"resnet18-5c106cde.pth <span style='color:#111;'> 44.66MB </span>","children":null,"spread":false},{"title":"resnet34-333f7ec4.pth <span style='color:#111;'> 83.26MB </span>","children":null,"spread":false},{"title":"resnet50-19c8e357.pth <span style='color:#111;'> 97.75MB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"train.py <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明