自然语言处理必读论文!涵盖主流研究方向!

上传者: 41251235 | 上传时间: 2021-07-09 10:16:13 | 文件大小: 37.19MB | 文件类型: RAR
自然语言处理必读论文 聚类&词向量 主题模型 语言模型 分割、标注、解析 序列模型、信息抽取 机器翻译, seq2seq模型 指代消歧 自动文本总结 问答系统、阅读理解 生成模型、强化学习 机器学习 神经网络模型 转载:http://blog.csdn.net/weixin_40400177/article/details/103485753 侵删!!!

文件下载

资源详情

[{"title":"( 74 个子文件 37.19MB ) 自然语言处理必读论文!涵盖主流研究方向!","children":[{"title":"自然语言处理","children":[{"title":"分割、标注、解析","children":[{"title":"Globally Normalized Transition-Based Neural Networks.pdf <span style='color:#111;'> 168.02KB </span>","children":null,"spread":false},{"title":"Grammar as a Foreign Language.pdf <span style='color:#111;'> 150.18KB </span>","children":null,"spread":false},{"title":"Corpus-Based Induction of Syntactic Structure Models of Dependency and Constituency..pdf <span style='color:#111;'> 409.62KB </span>","children":null,"spread":false},{"title":"Deterministic dependency parsing of English text.pdf <span style='color:#111;'> 241.67KB </span>","children":null,"spread":false},{"title":"A Maximum Entropy Model for Part-Of-Speech Tagging.pdf <span style='color:#111;'> 599.90KB </span>","children":null,"spread":false},{"title":"Discriminative Training Methods for Hidden Markov Models Theory and Experiments with Perceptron Algorithms.pdf <span style='color:#111;'> 268.71KB </span>","children":null,"spread":false},{"title":"A Maximum-Entropy-Inspired Parser.pdf <span style='color:#111;'> 785.08KB </span>","children":null,"spread":false},{"title":"Non-projective dependency parsing using spanning tree algorithms.pdf <span style='color:#111;'> 100.44KB </span>","children":null,"spread":false},{"title":"Accurate unlexicalized parsing.pdf <span style='color:#111;'> 83.50KB </span>","children":null,"spread":false},{"title":"Structural Ambiguity and Lexical Relations.pdf <span style='color:#111;'> 1.09MB </span>","children":null,"spread":false}],"spread":true},{"title":"指代消歧","children":[{"title":"Supervised noun phrase coreference research The first fifteen years.pdf <span style='color:#111;'> 223.59KB </span>","children":null,"spread":false},{"title":"End-to-end Neural Coreference Resolution.pdf <span style='color:#111;'> 226.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"主题模型","children":[{"title":"Probabilistic Latent Semantic Indexing.pdf <span style='color:#111;'> 213.73KB </span>","children":null,"spread":false},{"title":"Latent Dirichlet Allocation.pdf <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false}],"spread":true},{"title":"生成模型、强化学习","children":[{"title":"Sequence Level Training with Recurrent Neural Networks.pdf <span style='color:#111;'> 1.63MB </span>","children":null,"spread":false},{"title":"Deep Reinforcement Learning for Dialogue Generation.pdf <span style='color:#111;'> 5.00MB </span>","children":null,"spread":false},{"title":"SeqGAN Sequence Generative Adversarial Nets with Policy Gradient.pdf <span style='color:#111;'> 806.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"自动文本总结","children":[{"title":"Multi-Document Summarization by Maximizing Informative Content-Words.pdf <span style='color:#111;'> 159.67KB </span>","children":null,"spread":false},{"title":"A Neural Attention Model for Sentence Summarization.pdf <span style='color:#111;'> 615.86KB </span>","children":null,"spread":false},{"title":"Summarization beyond sentence extraction a probabilistic approach to sentence compression.pdf <span style='color:#111;'> 146.53KB </span>","children":null,"spread":false},{"title":"A Study of Global Inference Algorithms in Multi-document Summarization.pdf <span style='color:#111;'> 184.85KB </span>","children":null,"spread":false},{"title":"Modelling Compression with Discourse Constraints.pdf <span style='color:#111;'> 83.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"神经网络模型","children":[{"title":"Character-level Convolutional Networks for Text Classification.pdf <span style='color:#111;'> 295.96KB </span>","children":null,"spread":false},{"title":"BERT Pre-training of Deep Bidirectional Transformers for Language Understanding.pdf <span style='color:#111;'> 578.29KB </span>","children":null,"spread":false},{"title":"Dynamic_Pooling_and_Unfolding_Recursive_Autoencode.pdf <span style='color:#111;'> 946.29KB </span>","children":null,"spread":false},{"title":"Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank.pdf <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"Convolutional Neural Networks for Sentence Classification.pdf <span style='color:#111;'> 235.97KB </span>","children":null,"spread":false},{"title":"UnderstandingLSTMNetworks.pdf <span style='color:#111;'> 390.88KB </span>","children":null,"spread":false},{"title":"Natural Language Processing (almost) from Scratch.pdf <span style='color:#111;'> 757.64KB </span>","children":null,"spread":false},{"title":"Deep contextualized word representations.pdf <span style='color:#111;'> 415.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"序列模型、信息抽取","children":[{"title":"Bidirectional LSTM-CRF Models for Sequence Tagging.pdf <span style='color:#111;'> 296.66KB </span>","children":null,"spread":false},{"title":"End-to-end Sequence Labeling via Bi-directional LSTM-CNNs-CRF.pdf <span style='color:#111;'> 329.56KB </span>","children":null,"spread":false},{"title":"Discovering word senses from text.pdf <span style='color:#111;'> 119.25KB </span>","children":null,"spread":false},{"title":"Distant supervision for relation extraction without labeled data.pdf <span style='color:#111;'> 219.66KB </span>","children":null,"spread":false},{"title":"Unsupervised Models for Named Entity Classification.pdf <span style='color:#111;'> 144.26KB </span>","children":null,"spread":false},{"title":"Automatic Acquisition of Hyponyms from Large Text Corpora.pdf <span style='color:#111;'> 493.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"机器学习","children":[{"title":"Bayesian Inference with Tears.pdf <span style='color:#111;'> 787.50KB </span>","children":null,"spread":false},{"title":"Combining Labeled and Unlabeled Data with Co-Training.pdf <span style='color:#111;'> 207.83KB </span>","children":null,"spread":false},{"title":"An Introduction to Conditional Random Fields for Relational Learning.pdf <span style='color:#111;'> 404.85KB </span>","children":null,"spread":false},{"title":"Why Should I Trust You Explaining the Predictions of Any Classifier.pdf <span style='color:#111;'> 4.10MB </span>","children":null,"spread":false},{"title":"Text Classification from Labeled and Unlabeled Documents using EM.pdf <span style='color:#111;'> 410.46KB </span>","children":null,"spread":false},{"title":"Conditional Random Fields Probabilistic Models for Segmenting and Labeling Sequence Data.pdf <span style='color:#111;'> 174.31KB </span>","children":null,"spread":false}],"spread":true},{"title":"聚类&词向量","children":[{"title":"Efficient Estimation of Word Representations in Vector Space.pdf <span style='color:#111;'> 223.36KB </span>","children":null,"spread":false},{"title":"Class-Based_n-gram_Models_of_Natural_Language.pdf <span style='color:#111;'> 228.33KB </span>","children":null,"spread":false},{"title":"Glove_Global_Vectors_for_Word_Representation.pdf <span style='color:#111;'> 2.58MB </span>","children":null,"spread":false},{"title":"Distributed_Representations_of_Words_and_Phrases_a.pdf <span style='color:#111;'> 162.14KB </span>","children":null,"spread":false},{"title":"Enriching Word Vectors with Subword Information.pdf <span style='color:#111;'> 2.26MB </span>","children":null,"spread":false},{"title":"Distributed Representations of Sentences and Documents.pdf <span style='color:#111;'> 286.09KB </span>","children":null,"spread":false},{"title":"Skip-Thought Vectors.pdf <span style='color:#111;'> 1.30MB </span>","children":null,"spread":false}],"spread":true},{"title":"机器翻译, seq2seq模型","children":[{"title":"Neural Machine Translation of Rare Words with Subword Units.pdf <span style='color:#111;'> 420.28KB </span>","children":null,"spread":false},{"title":"Sequence to Sequence Learning with Neural Networks.pdf <span style='color:#111;'> 109.46KB </span>","children":null,"spread":false},{"title":"Statistical Phrase-Based Translation.pdf <span style='color:#111;'> 510.54KB </span>","children":null,"spread":false},{"title":"Machine Transliteration.pdf <span style='color:#111;'> 593.50KB </span>","children":null,"spread":false},{"title":"Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora.pdf <span style='color:#111;'> 1.62MB </span>","children":null,"spread":false},{"title":"The Web as a Parallel Corpus.pdf <span style='color:#111;'> 353.68KB </span>","children":null,"spread":false},{"title":"BLEU a Method for Automatic Evaluation of Machine Translation.pdf <span style='color:#111;'> 311.07KB </span>","children":null,"spread":false},{"title":"A Statistical Approach to Machine Translation.pdf <span style='color:#111;'> 659.99KB </span>","children":null,"spread":false},{"title":"Googles Neural Machine Translation System Bridging the Gap between Human and Machine Translation.pdf <span style='color:#111;'> 1.61MB </span>","children":null,"spread":false},{"title":"Effective Approaches to Attention-based Neural Machine Translation.pdf <span style='color:#111;'> 243.97KB </span>","children":null,"spread":false},{"title":"A Statistical MT Tutorial Workbook.pdf <span style='color:#111;'> 239.23KB </span>","children":null,"spread":false},{"title":"A hierarchical phrase-based model for statistical machine translation.pdf <span style='color:#111;'> 202.20KB </span>","children":null,"spread":false},{"title":"A Neural Conversational Model.pdf <span style='color:#111;'> 81.14KB </span>","children":null,"spread":false},{"title":"Convolutional Sequence to Sequence Learning.pdf <span style='color:#111;'> 559.87KB </span>","children":null,"spread":false},{"title":"The Alignment Template Approach to Statistical Machine Translation.pdf <span style='color:#111;'> 497.65KB </span>","children":null,"spread":false},{"title":"Neural Machine Translation by Jointly Learning to Align and Translate.pdf <span style='color:#111;'> 434.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"问答系统、阅读理解","children":[{"title":"Bi-Directional Attention Flow for Machine Comprehension.pdf <span style='color:#111;'> 615.10KB </span>","children":null,"spread":false},{"title":"SQuAD_100000_Questions_for_Machine_Comprehension_o.pdf <span style='color:#111;'> 456.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"语言模型","children":[{"title":"An Empirical Study of Smoothing Techniques for Language Modeling.pdf <span style='color:#111;'> 227.26KB </span>","children":null,"spread":false},{"title":"A bit of progress in language modeling.pdf <span style='color:#111;'> 356.33KB </span>","children":null,"spread":false},{"title":"A Bayesian Interpretation of Interpolated Kneser-Ney.pdf <span style='color:#111;'> 1.23MB </span>","children":null,"spread":false},{"title":"Character-Aware Neural Language Models.pdf <span style='color:#111;'> 469.17KB </span>","children":null,"spread":false},{"title":"The Unreasonable Effectiveness of Recurrent Neural Networks.pdf <span style='color:#111;'> 3.71MB </span>","children":null,"spread":false},{"title":"A Neural Probabilistic Language Model..pdf <span style='color:#111;'> 136.81KB </span>","children":null,"spread":false},{"title":"A hierarchical Bayesian language model based on Pitman-Yor processes.pdf <span style='color:#111;'> 155.53KB </span>","children":null,"spread":false}],"spread":true}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明