SWLSTM_GPR-master00.7z

上传者: 40840797 | 上传时间: 2021-08-28 17:01:27 | 文件大小: 18.2MB | 文件类型: ZIP
风速预测,SCI论文《Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression》代码复现

文件下载

资源详情

[{"title":"( 68 个子文件 18.2MB ) SWLSTM_GPR-master00.7z","children":[{"title":"SWLSTM_GPR-master00","children":[{"title":"SWLSTM_GPR_1","children":[{"title":"results","children":[{"title":"1565012753","children":[{"title":"dataset 2_results_1565012753.xlsx <span style='color:#111;'> 16.77KB </span>","children":null,"spread":false},{"title":"dataset 1_results_1565012753.xlsx <span style='color:#111;'> 13.48KB </span>","children":null,"spread":false},{"title":"metrics_1565012753.xlsx <span style='color:#111;'> 7.08KB </span>","children":null,"spread":false},{"title":"dataset 4_results_1565012753.xlsx <span style='color:#111;'> 21.61KB </span>","children":null,"spread":false},{"title":"dataset 3_results_1565012753.xlsx <span style='color:#111;'> 16.84KB </span>","children":null,"spread":false}],"spread":true},{"title":"1565013244","children":[{"title":"dataset 3_results_1565013244.xlsx <span style='color:#111;'> 30.48KB </span>","children":null,"spread":false},{"title":"dataset 2_results_1565013244.xlsx <span style='color:#111;'> 30.34KB </span>","children":null,"spread":false},{"title":"metrics_1565013244.xlsx <span style='color:#111;'> 7.65KB </span>","children":null,"spread":false},{"title":"dataset 4_results_1565013244.xlsx <span style='color:#111;'> 40.49KB </span>","children":null,"spread":false},{"title":"dataset 1_results_1565013244.xlsx <span style='color:#111;'> 23.32KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"evaluation","children":[{"title":"Draw.py <span style='color:#111;'> 4.27KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 309B </span>","children":null,"spread":false},{"title":"Evaluation.py <span style='color:#111;'> 6.74KB </span>","children":null,"spread":false}],"spread":true},{"title":"exe","children":[{"title":"__init__.py <span style='color:#111;'> 308B </span>","children":null,"spread":false},{"title":"experimentMain.py <span style='color:#111;'> 12.98KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"sampleWindspeed.xlsx <span style='color:#111;'> 31.35KB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"implModel","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ModelFactory.py <span style='color:#111;'> 4.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"recurrent.py <span style='color:#111;'> 123.32KB </span>","children":null,"spread":false},{"title":"datasetModel","children":[{"title":"__init__.py <span style='color:#111;'> 309B </span>","children":null,"spread":false},{"title":"Dataset.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"plots","children":[{"title":"1565012753","children":[{"title":"dataset 1_SWLSTM-GPR_1565012753_pit.jpg <span style='color:#111;'> 775.79KB </span>","children":null,"spread":false},{"title":"dataset 4_GPR_1565012753_pit.jpg <span style='color:#111;'> 804.89KB </span>","children":null,"spread":false},{"title":"dataset 3_GPR_1565012753_pit.jpg <span style='color:#111;'> 794.26KB </span>","children":null,"spread":false},{"title":"dataset 2_GPR_1565012753_pit.jpg <span style='color:#111;'> 797.00KB </span>","children":null,"spread":false},{"title":"dataset 2_SWLSTM-GPR_1565012753_predictions.jpg <span style='color:#111;'> 830.01KB </span>","children":null,"spread":false},{"title":"dataset 3_SWLSTM-GPR_1565012753_predictions.jpg <span style='color:#111;'> 762.40KB </span>","children":null,"spread":false},{"title":"dataset 1_GPR_1565012753_predictions.jpg <span style='color:#111;'> 797.62KB </span>","children":null,"spread":false},{"title":"dataset 4_GPR_1565012753_predictions.jpg <span style='color:#111;'> 951.55KB </span>","children":null,"spread":false},{"title":"dataset 1_GPR_1565012753_pit.jpg <span style='color:#111;'> 774.20KB </span>","children":null,"spread":false},{"title":"dataset 1_SWLSTM-GPR_1565012753_predictions.jpg <span style='color:#111;'> 796.11KB </span>","children":null,"spread":false},{"title":"dataset 3_GPR_1565012753_predictions.jpg <span style='color:#111;'> 770.90KB </span>","children":null,"spread":false},{"title":"dataset 2_SWLSTM-GPR_1565012753_pit.jpg <span style='color:#111;'> 796.71KB </span>","children":null,"spread":false},{"title":"dataset 2_GPR_1565012753_predictions.jpg <span style='color:#111;'> 823.98KB </span>","children":null,"spread":false},{"title":"dataset 3_SWLSTM-GPR_1565012753_pit.jpg <span style='color:#111;'> 798.29KB </span>","children":null,"spread":false},{"title":"dataset 4_SWLSTM-GPR_1565012753_pit.jpg <span style='color:#111;'> 798.20KB </span>","children":null,"spread":false},{"title":"dataset 4_SWLSTM-GPR_1565012753_predictions.jpg <span style='color:#111;'> 931.12KB </span>","children":null,"spread":false}],"spread":false},{"title":"1565013244","children":[{"title":"dataset 3_GRU_1565013244_predictions.jpg <span style='color:#111;'> 605.09KB </span>","children":null,"spread":false},{"title":"dataset 4_SWLSTM_1565013244_predictions.jpg <span style='color:#111;'> 804.36KB </span>","children":null,"spread":false},{"title":"dataset 1_SWLSTM-GPR_1565013244_pit.jpg <span style='color:#111;'> 778.30KB </span>","children":null,"spread":false},{"title":"dataset 4_GRU_1565013244_predictions.jpg <span style='color:#111;'> 807.86KB </span>","children":null,"spread":false},{"title":"dataset 1_LSTM_1565013244_predictions.jpg <span style='color:#111;'> 630.41KB </span>","children":null,"spread":false},{"title":"dataset 1_SWLSTM-GPR_1565013244_predictions.jpg <span style='color:#111;'> 782.57KB </span>","children":null,"spread":false},{"title":"dataset 3_SWLSTM-GPR_1565013244_predictions.jpg <span style='color:#111;'> 773.26KB </span>","children":null,"spread":false},{"title":"dataset 3_SWLSTM-GPR_1565013244_pit.jpg <span style='color:#111;'> 788.28KB </span>","children":null,"spread":false},{"title":"dataset 4_SWLSTM-GPR_1565013244_predictions.jpg <span style='color:#111;'> 929.77KB </span>","children":null,"spread":false},{"title":"dataset 2_SWLSTM_1565013244_predictions.jpg <span style='color:#111;'> 673.93KB </span>","children":null,"spread":false},{"title":"dataset 2_LSTM_1565013244_predictions.jpg <span style='color:#111;'> 668.25KB </span>","children":null,"spread":false},{"title":"dataset 2_SWLSTM-GPR_1565013244_predictions.jpg <span style='color:#111;'> 826.14KB </span>","children":null,"spread":false},{"title":"dataset 4_GPR_1565013244_predictions.jpg <span style='color:#111;'> 951.55KB </span>","children":null,"spread":false},{"title":"dataset 4_GPR_1565013244_pit.jpg <span style='color:#111;'> 804.89KB </span>","children":null,"spread":false},{"title":"dataset 1_SWLSTM_1565013244_predictions.jpg <span style='color:#111;'> 627.15KB </span>","children":null,"spread":false},{"title":"dataset 2_GRU_1565013244_predictions.jpg <span style='color:#111;'> 674.07KB </span>","children":null,"spread":false},{"title":"dataset 2_SWLSTM-GPR_1565013244_pit.jpg <span style='color:#111;'> 792.57KB </span>","children":null,"spread":false},{"title":"dataset 1_GRU_1565013244_predictions.jpg <span style='color:#111;'> 637.24KB </span>","children":null,"spread":false},{"title":"dataset 2_GPR_1565013244_pit.jpg <span style='color:#111;'> 797.00KB </span>","children":null,"spread":false},{"title":"dataset 3_SWLSTM_1565013244_predictions.jpg <span style='color:#111;'> 609.59KB </span>","children":null,"spread":false},{"title":"dataset 2_GPR_1565013244_predictions.jpg <span style='color:#111;'> 823.98KB </span>","children":null,"spread":false},{"title":"dataset 1_GPR_1565013244_pit.jpg <span style='color:#111;'> 774.20KB </span>","children":null,"spread":false},{"title":"dataset 3_LSTM_1565013244_predictions.jpg <span style='color:#111;'> 595.86KB </span>","children":null,"spread":false},{"title":"dataset 3_GPR_1565013244_predictions.jpg <span style='color:#111;'> 770.90KB </span>","children":null,"spread":false},{"title":"dataset 4_LSTM_1565013244_predictions.jpg <span style='color:#111;'> 822.76KB </span>","children":null,"spread":false},{"title":"dataset 1_GPR_1565013244_predictions.jpg <span style='color:#111;'> 797.62KB </span>","children":null,"spread":false},{"title":"dataset 4_SWLSTM-GPR_1565013244_pit.jpg <span style='color:#111;'> 803.39KB </span>","children":null,"spread":false},{"title":"dataset 3_GPR_1565013244_pit.jpg <span style='color:#111;'> 794.26KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true},{"title":"Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression.pdf <span style='color:#111;'> 6.64MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明