[{"title":"( 17 个子文件 831.6MB ) 机器学习案例实战:使用sklearn构造决策树模型.zip","children":[{"title":"14案例实战:泰坦尼克获救预测","children":[{"title":"课时79随机森林特征重要性分析.mp4 <span style='color:#111;'> 71.36MB </span>","children":null,"spread":false},{"title":"课时75船员数据分析.mp4 <span style='color:#111;'> 48.06MB </span>","children":null,"spread":false},{"title":"课时77使用回归算法进行预测.mp4 <span style='color:#111;'> 54.19MB </span>","children":null,"spread":false},{"title":"课时78使用随机森林改进模型.mp4 <span style='color:#111;'> 62.91MB </span>","children":null,"spread":false},{"title":"课时76数据预处理.mp4 <span style='color:#111;'> 52.54MB </span>","children":null,"spread":false}],"spread":true},{"title":"13集成算法与随机森林","children":[{"title":"课时74堆叠模型.mp4 <span style='color:#111;'> 19.56MB </span>","children":null,"spread":false},{"title":"课时71集成算法-随机森林.mp4 <span style='color:#111;'> 35.32MB </span>","children":null,"spread":false},{"title":"课时72特征重要性衡量.mp4 <span style='color:#111;'> 34.57MB </span>","children":null,"spread":false},{"title":"课时74堆叠模型(1).mp4 <span style='color:#111;'> 19.56MB </span>","children":null,"spread":false},{"title":"课时71集成算法-随机森林(1).mp4 <span style='color:#111;'> 35.32MB </span>","children":null,"spread":false},{"title":"课时72特征重要性衡量(1).mp4 <span style='color:#111;'> 34.57MB </span>","children":null,"spread":false},{"title":"课时73提升模型(1).mp4 <span style='color:#111;'> 33.51MB </span>","children":null,"spread":false},{"title":"课时73提升模型.mp4 <span style='color:#111;'> 33.51MB </span>","children":null,"spread":false}],"spread":true},{"title":"12案例实战:使用sklearn构造决策树模型","children":[{"title":"课时67决策树复习.mp4 <span style='color:#111;'> 27.24MB </span>","children":null,"spread":false},{"title":"课时70sklearn参数选择.mp4 <span style='color:#111;'> 59.21MB </span>","children":null,"spread":false},{"title":"课时69树可视化与sklearn库简介.mp4 <span style='color:#111;'> 164.33MB </span>","children":null,"spread":false},{"title":"课时68决策树涉及参数.mp4 <span style='color:#111;'> 80.14MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]