[{"title":"( 61 个子文件 2.37MB ) 检索图像和搜索,相似性学习,比较深度度量和深度散列在图像检索 中的应用_Jupyter_python_代码_下载","children":[{"title":"DeepEmbeding-master","children":[{"title":".gitignore <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"train_fashion_inclass.sh <span style='color:#111;'> 177B </span>","children":null,"spread":false},{"title":"train_hash.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"manage_visdom.py <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"parse_deepinshopdata.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"visulization.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"vis_tsne_images.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"extract_Ebaytxt_fromDeepFashion.py <span style='color:#111;'> 326B </span>","children":null,"spread":false},{"title":"sku_viewer.py <span style='color:#111;'> 493B </span>","children":null,"spread":false},{"title":"mxnet_server_client.py <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"train_mx_margin.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"log_config.py <span style='color:#111;'> 579B </span>","children":null,"spread":false}],"spread":true},{"title":"train_cub.sh <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"train_In_classEbay.sh <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"requiremetns.txt <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"train_fashion_inclass2.sh <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"train_margin_cub.py <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"deep-metric-learning.MD <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"extract_feature.sh <span style='color:#111;'> 166B </span>","children":null,"spread":false},{"title":"server","children":[{"title":"ab_test.py <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"copy_nn.py <span style='color:#111;'> 8.05KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false}],"spread":true},{"title":"train_mc_npair.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"dml_model.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"visnet.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mx_margin_model.py <span style='color:#111;'> 8.37KB </span>","children":null,"spread":false},{"title":"hashnet.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"sample_dml.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"vgg_classify.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"deep_test.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"fashion_test.txt <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_mx_ebay_margin.py <span style='color:#111;'> 14.12KB </span>","children":null,"spread":false},{"title":"train_mx_margin.py <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"train_classify.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"train_cross_classEbay.sh <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"n_pair_mc","children":[{"title":"deep_in_fashion.py <span style='color:#111;'> 669B </span>","children":null,"spread":false},{"title":"npair_dataset.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"classify","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ClassifyData.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"margin_cub200","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"cub200_margin.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 513B </span>","children":null,"spread":false},{"title":"mxdata","children":[{"title":"mxcub200.py <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"deep_fashion.py <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":"composedataset.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"mxcub_simple.py <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"basic_module","children":[{"title":"basic_transform.py <span style='color:#111;'> 630B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"online_products.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"hashdata","children":[{"title":"hash_tri_files.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"README.MD <span style='color:#111;'> 13.09KB </span>","children":null,"spread":false},{"title":"configs.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"feature_extract_demo.ipynb <span style='color:#111;'> 2.90MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]