检索图像和搜索,相似性学习,比较深度度量和深度散列在图像检索 中的应用_Jupyter_python_代码_下载

上传者: 38334677 | 上传时间: 2022-06-12 14:05:06 | 文件大小: 2.37MB | 文件类型: ZIP
检索图像问题的一般解法 DeepEmbedding空间使用第一个搜索空间研究(DeepMetric)深度哈希(DeepHash)的空间映射函数,将空间空间的学习映射到低维嵌入引擎的空间映射函数。抽取特征,即本次实验研究的第二个问题,第二个问题为特征搜索问题 关于本项目的使用 1.下载相应训练的数据集 2.采用不同的损失类型对模型进行运行train cub200模型 nohup python train_mx_ebay_margin.py --gpus=1 --batch-k=5 --use_viz --epochs=30 --use_pretrained --steps=12,16,20,24 --name=CUB_200_2011 --save-model-prefix=cub200 > mycub200.out 2>&1 & 运行火车 stanford_online_product nohup python train_mx_ebay_margin.py --batch-k=2 --batch-size=80 --use_pretrained --use_viz --gpus

文件下载

资源详情

[{"title":"( 61 个子文件 2.37MB ) 检索图像和搜索,相似性学习,比较深度度量和深度散列在图像检索 中的应用_Jupyter_python_代码_下载","children":[{"title":"DeepEmbeding-master","children":[{"title":".gitignore <span style='color:#111;'> 319B </span>","children":null,"spread":false},{"title":"train_fashion_inclass.sh <span style='color:#111;'> 177B </span>","children":null,"spread":false},{"title":"train_hash.py <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"manage_visdom.py <span style='color:#111;'> 223B </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"parse_deepinshopdata.py <span style='color:#111;'> 819B </span>","children":null,"spread":false},{"title":"visulization.py <span style='color:#111;'> 1.90KB </span>","children":null,"spread":false},{"title":"vis_tsne_images.py <span style='color:#111;'> 4.70KB </span>","children":null,"spread":false},{"title":"extract_Ebaytxt_fromDeepFashion.py <span style='color:#111;'> 326B </span>","children":null,"spread":false},{"title":"sku_viewer.py <span style='color:#111;'> 493B </span>","children":null,"spread":false},{"title":"mxnet_server_client.py <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 67B </span>","children":null,"spread":false},{"title":"train_mx_margin.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"log_config.py <span style='color:#111;'> 579B </span>","children":null,"spread":false}],"spread":true},{"title":"train_cub.sh <span style='color:#111;'> 179B </span>","children":null,"spread":false},{"title":"train_In_classEbay.sh <span style='color:#111;'> 184B </span>","children":null,"spread":false},{"title":"requiremetns.txt <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"train_fashion_inclass2.sh <span style='color:#111;'> 211B </span>","children":null,"spread":false},{"title":"train_margin_cub.py <span style='color:#111;'> 7.74KB </span>","children":null,"spread":false},{"title":"docs","children":[{"title":"deep-metric-learning.MD <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false}],"spread":true},{"title":"extract_feature.sh <span style='color:#111;'> 166B </span>","children":null,"spread":false},{"title":"server","children":[{"title":"ab_test.py <span style='color:#111;'> 423B </span>","children":null,"spread":false},{"title":"copy_nn.py <span style='color:#111;'> 8.05KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 28B </span>","children":null,"spread":false}],"spread":true},{"title":"train_mc_npair.py <span style='color:#111;'> 7.13KB </span>","children":null,"spread":false},{"title":"models","children":[{"title":"dml_model.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 312B </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 845B </span>","children":null,"spread":false},{"title":"visnet.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"mx_margin_model.py <span style='color:#111;'> 8.37KB </span>","children":null,"spread":false},{"title":"hashnet.py <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"sample_dml.py <span style='color:#111;'> 6.34KB </span>","children":null,"spread":false},{"title":"vgg_classify.py <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false}],"spread":false},{"title":"main.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"checkpoints","children":[{"title":"deep_test.txt <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"fashion_test.txt <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"train_mx_ebay_margin.py <span style='color:#111;'> 14.12KB </span>","children":null,"spread":false},{"title":"train_mx_margin.py <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false},{"title":"train_classify.py <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"train_cross_classEbay.sh <span style='color:#111;'> 193B </span>","children":null,"spread":false},{"title":"data","children":[{"title":"n_pair_mc","children":[{"title":"deep_in_fashion.py <span style='color:#111;'> 669B </span>","children":null,"spread":false},{"title":"npair_dataset.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"classify","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"ClassifyData.py <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"margin_cub200","children":[{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"cub200_margin.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false}],"spread":false},{"title":"__init__.py <span style='color:#111;'> 513B </span>","children":null,"spread":false},{"title":"mxdata","children":[{"title":"mxcub200.py <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"deep_fashion.py <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":"composedataset.py <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"mxcub_simple.py <span style='color:#111;'> 5.79KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 85B </span>","children":null,"spread":false},{"title":"basic_module","children":[{"title":"basic_transform.py <span style='color:#111;'> 630B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false},{"title":"online_products.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false}],"spread":false},{"title":"hashdata","children":[{"title":"hash_tri_files.py <span style='color:#111;'> 3.78KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"README.MD <span style='color:#111;'> 13.09KB </span>","children":null,"spread":false},{"title":"configs.py <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"feature_extract_demo.ipynb <span style='color:#111;'> 2.90MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明