[{"title":"( 77 个子文件 82.8MB ) Python机器学习编程与实战_源代码和实验数据.rar","children":[{"title":"第8章","children":[{"title":"data","children":[{"title":"USER_INFO_M.csv <span style='color:#111;'> 139.48MB </span>","children":null,"spread":false}],"spread":true},{"title":"tmp","children":[{"title":"data_manu.csv <span style='color:#111;'> 25.36KB </span>","children":null,"spread":false},{"title":"data_drop.csv <span style='color:#111;'> 146.11KB </span>","children":null,"spread":false},{"title":"data_preprocessed.csv <span style='color:#111;'> 128.64MB </span>","children":null,"spread":false},{"title":"data_os.csv <span style='color:#111;'> 26.33KB </span>","children":null,"spread":false},{"title":"data_vip.csv <span style='color:#111;'> 20.48KB </span>","children":null,"spread":false},{"title":"data_credit.csv <span style='color:#111;'> 21.46KB </span>","children":null,"spread":false},{"title":"data_group.csv <span style='color:#111;'> 125.53KB </span>","children":null,"spread":false},{"title":"data_agree.csv <span style='color:#111;'> 20.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"8.4 使用多层感知器算法实现通信运营商客户流失预测.py <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false},{"title":"8.3 特征工程.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false},{"title":"8.2 数据准备.py <span style='color:#111;'> 7.81KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第2章","children":[{"title":"code","children":[{"title":"2.1 ndarray创建与索引.py <span style='color:#111;'> 3.82KB </span>","children":null,"spread":false},{"title":"2.2 ndarray的基础操作.py <span style='color:#111;'> 4.02KB </span>","children":null,"spread":false},{"title":"2.3 ufunc.py <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第7章","children":[{"title":"data","children":[{"title":"Meals_income.csv <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"user_loss.csv <span style='color:#111;'> 540.89KB </span>","children":null,"spread":false},{"title":"users.csv <span style='color:#111;'> 119.00KB </span>","children":null,"spread":false},{"title":"meal_order_info.csv <span style='color:#111;'> 115.50KB </span>","children":null,"spread":false},{"title":"info_new.csv <span style='color:#111;'> 653.93KB </span>","children":null,"spread":false}],"spread":true},{"title":"tmp","children":[{"title":"sale_sum.csv <span style='color:#111;'> 515B </span>","children":null,"spread":false},{"title":"users_august.csv <span style='color:#111;'> 25.28KB </span>","children":null,"spread":false},{"title":"info_august_new.csv <span style='color:#111;'> 95.92KB </span>","children":null,"spread":false},{"title":"info_user.csv <span style='color:#111;'> 360.11KB </span>","children":null,"spread":false},{"title":"sale_day.csv <span style='color:#111;'> 682B </span>","children":null,"spread":false},{"title":"info_user_clear.csv <span style='color:#111;'> 90.27KB </span>","children":null,"spread":false},{"title":"user_value.csv <span style='color:#111;'> 22.29KB </span>","children":null,"spread":false},{"title":"Meals_income.png <span style='color:#111;'> 429.52KB </span>","children":null,"spread":false},{"title":"standard.npz <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"7.4 使用决策树算法实现餐饮客户流失预测.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"7.3 使用K-means算法进行客户价值分析.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"7.2 数据准备.py <span style='color:#111;'> 3.62KB </span>","children":null,"spread":false},{"title":"绘制图7-1.py <span style='color:#111;'> 1009B </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第4章","children":[{"title":"data","children":[{"title":"users_info.xlsx <span style='color:#111;'> 84.48KB </span>","children":null,"spread":false},{"title":"Station.csv <span style='color:#111;'> 7.61MB </span>","children":null,"spread":false},{"title":"orders.sql <span style='color:#111;'> 521.39KB </span>","children":null,"spread":false},{"title":"Concrete.csv <span style='color:#111;'> 17.91KB </span>","children":null,"spread":false},{"title":"meal_order_info.csv <span style='color:#111;'> 112.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"tmp","children":[{"title":"users_info_out.xlsx <span style='color:#111;'> 5.98KB </span>","children":null,"spread":false},{"title":"meal_order_info_out.csv <span style='color:#111;'> 764B </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"4.3 数据准备.py <span style='color:#111;'> 2.35KB </span>","children":null,"spread":false},{"title":"4.2 DataFrame进阶.py <span style='color:#111;'> 4.21KB </span>","children":null,"spread":false},{"title":"4.1 数据读取与写出.py <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"04.【泰迪科技】人工智能产品体系.png <span style='color:#111;'> 621.26KB </span>","children":null,"spread":false},{"title":"03.【泰迪科技】商务数据分析产品体系.png <span style='color:#111;'> 667.16KB </span>","children":null,"spread":false},{"title":"第1章","children":[{"title":"code","children":[{"title":"1.4 函数.py <span style='color:#111;'> 521B </span>","children":null,"spread":false},{"title":"1.3 控制语句.py <span style='color:#111;'> 1.02KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第3章","children":[{"title":"code","children":[{"title":"3.2 DataFrame基础操作.py <span style='color:#111;'> 3.99KB </span>","children":null,"spread":false},{"title":"3.3 其他数据类型操作.py <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"3.1 pandas常用类.py <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"02.【泰迪科技】大数据产品体系.png <span style='color:#111;'> 668.48KB </span>","children":null,"spread":false},{"title":"第6章","children":[{"title":"tmp","children":[{"title":"cancer <span style='color:#111;'> 2.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"6.4 回归.py <span style='color:#111;'> 2.45KB </span>","children":null,"spread":false},{"title":"6.2 降维.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"6.6 模型选择.py <span style='color:#111;'> 3.24KB </span>","children":null,"spread":false},{"title":"6.5 聚类.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"6.1 数据准备.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false},{"title":"6.3 分类.py <span style='color:#111;'> 6.89KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"01.【泰迪科技】公司介绍.jpg <span style='color:#111;'> 1.81MB </span>","children":null,"spread":false},{"title":"第5章","children":[{"title":"data","children":[{"title":"国民经济核算季度数据.npz <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"tmp","children":[{"title":"plt风格.png <span style='color:#111;'> 14.97KB </span>","children":null,"spread":false},{"title":"2016年各产业国民生产总值条形图.png <span style='color:#111;'> 25.85KB </span>","children":null,"spread":false},{"title":"生产总值箱线图.png <span style='color:#111;'> 130.34KB </span>","children":null,"spread":false},{"title":"三种产业散点图.png <span style='color:#111;'> 20.67KB </span>","children":null,"spread":false},{"title":"整体流程绘图.png <span style='color:#111;'> 15.96KB </span>","children":null,"spread":false},{"title":"sin曲线1.png <span style='color:#111;'> 15.16KB </span>","children":null,"spread":false},{"title":"2000~2017年季度生产总值散点图.png <span style='color:#111;'> 27.89KB </span>","children":null,"spread":false},{"title":"自编函数绘图并添加文本.png <span style='color:#111;'> 17.63KB </span>","children":null,"spread":false},{"title":"各产业第一季度折线图.png <span style='color:#111;'> 44.72KB </span>","children":null,"spread":false},{"title":"2000~2017年季度各产业生产总值折线图.png <span style='color:#111;'> 54.02KB </span>","children":null,"spread":false},{"title":"sin曲线2.png <span style='color:#111;'> 15.08KB </span>","children":null,"spread":false},{"title":"2000到2016产业结构变化饼图.png <span style='color:#111;'> 32.50KB </span>","children":null,"spread":false},{"title":"线条rc参数对比.png <span style='color:#111;'> 23.76KB </span>","children":null,"spread":false},{"title":"标准正态分布数据直方图.png <span style='color:#111;'> 20.24KB </span>","children":null,"spread":false}],"spread":false},{"title":"code","children":[{"title":"5.3 分析特征内部数据状态常用图形.py <span style='color:#111;'> 2.81KB </span>","children":null,"spread":false},{"title":"5.2 分析特征关系常用图形.py <span style='color:#111;'> 2.37KB </span>","children":null,"spread":false},{"title":"5.1 Matplotlib绘图基础.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]