费马素性检测,费马小定理

上传者: 37154060 | 上传时间: 2021-10-18 16:10:12 | 文件大小: 2KB | 文件类型: -
费马素性检验是一种随机化算法,判断一个数是合数还是可能是素数。 根据费马小定理:如果p是素数,1 \le a \le p,那么 a^ \equiv 1 \pmod。 如果我们想知道n是否是素数,我们在中间选取a,看看上面等式是否成立。如果对于数值a等式不成立,那么n是合数。如果有很多的a能够使等式成立,那么我们可以说n 可能是素数,或者伪素数。 在我们检验过程中,有可能我们选取的a都能让等式成立,然而n却是合数。这时等式 a^ \equiv 1 \pmod 被称为Fermat liar。如果我们选取满足下面等式的a 费马素性检验 费马素性检验 a^ \not\equiv 1 \pmod 那么a也就是对于n的合数判定的Fermat witness。 整个算法可以写成是下面两大部: 输入:n需要检验的数;k:参数之一来决定检验需要进行的次数。 输出:当n是合数时,否则可能是素数: 重复k次: 在[1, n − 1]范围内随机选取a 如果an − 1 mod n ≠ 1 那么返回合数 返回可能是素数

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明