目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

上传者: 36130719 | 上传时间: 2024-08-24 13:26:55 | 文件大小: 2.53MB | 文件类型: RAR
YOLO(You Only Look Once)是一种广泛应用于计算机视觉领域中的实时目标检测算法,因其高效、准确的特点而备受关注。在本教程"目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测"中,我们将深入探讨如何利用YOLOV5这一最新版本的YOLO框架来处理小目标检测的挑战。 小目标检测是目标检测领域的一个难题,因为小目标在图像中的尺寸相对较小,容易被背景噪声淹没,导致检测难度增大。YOLOV5作为YOLO系列的最新发展,通过一系列改进优化了小目标检测性能。 1. YOLOV5概述:YOLOV5由Joseph Redmon等人开发,继承了YOLO系列的一贯优势——快速和准确。它采用了更先进的网络结构,包括ResNet、SPP-Block、FPN(Feature Pyramid Network)等,增强了特征提取的能力,尤其对小目标有更好的响应。 2. 数据预处理:在训练模型前,数据预处理至关重要。这包括图像的归一化、尺度变换以及数据增强,如翻转、旋转、裁剪等,以提高模型对不同场景的泛化能力。 3. 网络结构:YOLOV5的核心在于其网络架构,包括CSPNet用于减少计算冗余,SPP-Block增强特征表示,和 PANet 构建金字塔特征层级,这些设计都有助于捕捉小目标的细节。 4. 训练策略:使用批归一化(Batch Normalization)、权重初始化和学习率调度策略,如Warmup和Cosine Annealing,能够加速模型收敛并提升最终性能。 5. 损失函数:YOLOV5使用多任务损失函数,包含分类损失、坐标回归损失和置信度损失,这些损失的综合优化有助于提升小目标检测的精度。 6. 实战应用:教程中将涵盖各种实际应用场景,如视频监控、自动驾驶、无人机侦查等,通过具体案例帮助理解YOLOV5在小目标检测中的应用和优化技巧。 7. 部署与优化:学习如何将训练好的模型部署到实际系统中,同时探讨如何进行模型轻量化和加速,使其适应边缘计算设备。 8. 评估指标:了解IoU(Intersection over Union)、AP(Average Precision)等评估指标,理解它们如何衡量模型的检测效果,以及如何根据这些指标调整模型参数。 通过本课程的学习,你将掌握YOLOV5的核心原理和实践技巧,具备解决小目标检测问题的能力,为你的计算机视觉项目增添强大工具。同时,通过100个实战案例,你将有机会深入理解并应对各类挑战,提升自己的实战技能。

文件下载

资源详情

[{"title":"( 120 个子文件 2.53MB ) 目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测","children":[{"title":"yolov5_ncnn.cpp <span style='color:#111;'> 13.15KB </span>","children":null,"spread":false},{"title":"Dockerfile <span style='color:#111;'> 821B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 3.83KB </span>","children":null,"spread":false},{"title":"bus.jpg <span style='color:#111;'> 476.01KB </span>","children":null,"spread":false},{"title":"efficientlite.jpg <span style='color:#111;'> 257.39KB </span>","children":null,"spread":false},{"title":"GhostNet.jpg <span style='color:#111;'> 225.00KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 164.99KB </span>","children":null,"spread":false},{"title":"Mobilenetv3s.jpg <span style='color:#111;'> 142.20KB </span>","children":null,"spread":false},{"title":"test.jpg <span style='color:#111;'> 118.11KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 12.51KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 10.21KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 1.67KB </span>","children":null,"spread":false},{"title":"TPH-YOLOv5.png <span style='color:#111;'> 518.05KB </span>","children":null,"spread":false},{"title":"PP-LCNet.png <span style='color:#111;'> 198.00KB </span>","children":null,"spread":false},{"title":"image-20211109150606998.png <span style='color:#111;'> 122.12KB </span>","children":null,"spread":false},{"title":"eagleeye.png <span style='color:#111;'> 94.00KB </span>","children":null,"spread":false},{"title":"Shffulenet.png <span style='color:#111;'> 70.90KB </span>","children":null,"spread":false},{"title":"datasets.py <span style='color:#111;'> 43.05KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 33.66KB </span>","children":null,"spread":false},{"title":"common.py <span style='color:#111;'> 33.38KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 33.30KB </span>","children":null,"spread":false},{"title":"wandb_utils.py <span style='color:#111;'> 25.19KB </span>","children":null,"spread":false},{"title":"debug.py <span style='color:#111;'> 20.82KB </span>","children":null,"spread":false},{"title":"tf.py <span style='color:#111;'> 19.75KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 18.83KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 16.69KB </span>","children":null,"spread":false},{"title":"export.py <span style='color:#111;'> 16.09KB </span>","children":null,"spread":false},{"title":"yolo.py <span style='color:#111;'> 15.22KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 15.03KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 14.41KB </span>","children":null,"spread":false},{"title":"yolo_quantize.py <span style='color:#111;'> 14.31KB </span>","children":null,"spread":false},{"title":"detect_trt.py <span style='color:#111;'> 13.97KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 13.19KB </span>","children":null,"spread":false},{"title":"prune_utils.py <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 11.45KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 11.08KB </span>","children":null,"spread":false},{"title":"SwinTransformer.py <span style='color:#111;'> 11.02KB </span>","children":null,"spread":false},{"title":"export_onnx_trt.py <span style='color:#111;'> 9.32KB </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 6.91KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 6.44KB </span>","children":null,"spread":false},{"title":"hubconf.py <span style='color:#111;'> 6.09KB </span>","children":null,"spread":false},{"title":"adaptive_bn.py <span style='color:#111;'> 6.06KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 5.96KB </span>","children":null,"spread":false},{"title":"pruneEagleEye.py <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"experimental.py <span style='color:#111;'> 4.42KB </span>","children":null,"spread":false},{"title":"pruneSlim.py <span style='color:#111;'> 4.30KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"resume.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"restapi.py <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"sweep.py <span style='color:#111;'> 989B </span>","children":null,"spread":false},{"title":"log_dataset.py <span style='color:#111;'> 891B </span>","children":null,"spread":false},{"title":"example_request.py <span style='color:#111;'> 299B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"baseTrain.sh <span style='color:#111;'> 5.09KB </span>","children":null,"spread":false},{"title":"userdata.sh <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"get_coco.sh <span style='color:#111;'> 900B </span>","children":null,"spread":false},{"title":"mime.sh <span style='color:#111;'> 780B </span>","children":null,"spread":false},{"title":"get_coco128.sh <span style='color:#111;'> 615B </span>","children":null,"spread":false},{"title":"download_weights.sh <span style='color:#111;'> 443B </span>","children":null,"spread":false},{"title":"requirements.txt <span style='color:#111;'> 892B </span>","children":null,"spread":false},{"title":"additional_requirements.txt <span style='color:#111;'> 105B </span>","children":null,"spread":false},{"title":"Objects365.yaml <span style='color:#111;'> 7.15KB </span>","children":null,"spread":false},{"title":"xView.yaml <span style='color:#111;'> 4.92KB </span>","children":null,"spread":false},{"title":"VOC.yaml <span style='color:#111;'> 3.30KB </span>","children":null,"spread":false},{"title":"anchors.yaml <span style='color:#111;'> 3.26KB </span>","children":null,"spread":false},{"title":"VisDrone.yaml <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"Argoverse.yaml <span style='color:#111;'> 2.69KB </span>","children":null,"spread":false},{"title":"sweep.yaml <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"SKU-110K.yaml <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"coco.yaml <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"yolov5lEfficientLite.yaml <span style='color:#111;'> 2.17KB </span>","children":null,"spread":false},{"title":"yolov5xP2CBAM-TPH-BiFPN-SPP.yaml <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"yolov5xP2CBAM-Swin-BiFPN-SPP.yaml <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"yolov5s-pruning.yaml <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"yolov5lMobilenetv3Small.yaml <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"yolov5lGhost.yaml <span style='color:#111;'> 2.00KB </span>","children":null,"spread":false},{"title":"yolov5-p7.yaml <span style='color:#111;'> 1.99KB </span>","children":null,"spread":false},{"title":"yolov5n-pruning.yaml <span style='color:#111;'> 1.88KB </span>","children":null,"spread":false},{"title":"GlobalWheat2020.yaml <span style='color:#111;'> 1.84KB </span>","children":null,"spread":false},{"title":"yolov5xP2CBAM.yaml <span style='color:#111;'> 1.83KB </span>","children":null,"spread":false},{"title":"yolov5x6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5s6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5n6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5m6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5l6.yaml <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"yolov5lPP-LC.yaml <span style='color:#111;'> 1.71KB </span>","children":null,"spread":false},{"title":"coco128.yaml <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false},{"title":"yolov5xP2.yaml <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"yolov5s-0.6-pruned.yaml <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false},{"title":"hyp.scratch-low.yaml <span style='color:#111;'> 1.65KB </span>","children":null,"spread":false},{"title":"hyp.scratch-high.yaml <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"hyp.scratch.yaml <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"yolov5-p6.yaml <span style='color:#111;'> 1.62KB </span>","children":null,"spread":false},{"title":"yolov5-p2.yaml <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"yolov3-spp.yaml <span style='color:#111;'> 1.53KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明