使用BP神经网络识别手写数字

上传者: 34767617 | 上传时间: 2021-12-08 12:50:11 | 文件大小: 10.96MB | 文件类型: -
NIST提供的是28 * 28的图片,因此输入层是754维的向量。隐层输出层为10维向量 公式定义: 输出层:01 ... 01 隐层:Y1 ... YN 输入层:X1 ... XM 输入层与隐层间的权值$ V_ {ij} $ 隐层与输出层之间的权值$ W_ {jk} $ 使用函数$ F(X)= \压裂{1} {1个+ E ^ { - X}} $ 准确值D1 ... DL 学习率ETA 隐层与输出层间误差$ \ delta ^ o_k =(d_k - O_k)O_k(1-O_k)$ 输入层与隐层间误差$ \ delta ^ y_j =(\ sum ^ {l} {k = 1} \ delta ^ o_kW {jk})y_j(1-y_j)$ 误差反传时$ \ Delta W_ {jk} = \ eta(d_k-O_k)O_k(1-O_k)* y_j $ $ \ Delta V_ {ij} = \ eta(\ sum ^ {l} {k = 1} \ delta ^ o_kW {jk})y_j(1-y_j)X_i $ 每次计算时先从输入层计算到输出层,然后算出三层间的两个误差,然后更新网络间的权值

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明