求解广义瑞利商的极值问题,包括局部最优值和全局最优值的论证

上传者: 31890917 | 上传时间: 2021-11-11 11:27:29 | 文件大小: 2.91MB | 文件类型: -
Given symmetric matrices B,D ∈ R n×n and a symmetric positive definite matrix W ∈ R n×n , maximizingthe sum of the Rayleighquotientx ? Dx andthe gener- alized Rayleigh quotient x ? Bx x ? Wx on the unit sphere not only is of mathematical interest in its own right, but also finds applications in practice. In this paper, we first present a real world application arising from the sparse Fisher discriminant analysis. To tackle this problem, our first effort is to characterize the local and global maxima by investi- gating the optimality conditions. Our results reveal that finding the global solution is closely related with a special extreme nonlinear eigenvalue problem, and in the spe- cial case D = μW (μ > 0), the set of the global solutions is essentially an eigenspace corresponding to the largest eigenvalue of a specially-defined matrix. The characteri- zation of the global solution not only sheds some lights on the maximization problem, but motives a starting point strategy to obtain the global maximizer for any monoton- ically convergent iteration. Our second part then realizes the Riemannian trust-region method of Absil, Baker and Gallivan (Found. Comput. Math. 7:303–330, 2007) into a practical algorithm to solve this problem, which enjoys the nice convergence prop- erties: global convergence and local superlinear convergence. Preliminary numerical tests are carried out and empirical evaluation of its performance is reported.

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明