对抗样本攻击

上传者: 31490151 | 上传时间: 2021-03-04 15:33:00 | 文件大小: 185.79MB | 文件类型: ZIP
对抗样本攻击的实现,运行test.py即可,如果想要测试其他图片可以修改代码中的图片路径。

文件下载

资源详情

[{"title":"( 74 个子文件 185.79MB ) 对抗样本攻击","children":[{"title":"attack","children":[{"title":"images","children":[{"title":"style5.jpg <span style='color:#111;'> 78.04KB </span>","children":null,"spread":false},{"title":"xyf.jpg <span style='color:#111;'> 854.94KB </span>","children":null,"spread":false},{"title":"parrot_cropped2.jpg <span style='color:#111;'> 39.44KB </span>","children":null,"spread":false},{"title":"escher_planefilling2.jpg <span style='color:#111;'> 430.30KB </span>","children":null,"spread":false},{"title":"hulk.jpg <span style='color:#111;'> 249.55KB </span>","children":null,"spread":false},{"title":"style8.jpg <span style='color:#111;'> 67.53KB </span>","children":null,"spread":false},{"title":"parrot_padded.jpg <span style='color:#111;'> 23.40KB </span>","children":null,"spread":false},{"title":"style3.jpg <span style='color:#111;'> 142.24KB </span>","children":null,"spread":false},{"title":"16_training_stability.svg <span style='color:#111;'> 54.01KB </span>","children":null,"spread":false},{"title":"08_transfer_learning_flowchart.svg <span style='color:#111;'> 460.31KB </span>","children":null,"spread":false},{"title":"09_transfer_learning_flowchart.svg <span style='color:#111;'> 498.16KB </span>","children":null,"spread":false},{"title":"style1.jpg <span style='color:#111;'> 21.01KB </span>","children":null,"spread":false},{"title":"02_network_flowchart.png <span style='color:#111;'> 214.96KB </span>","children":null,"spread":false},{"title":"15_style_transfer_flowchart.png <span style='color:#111;'> 778.65KB </span>","children":null,"spread":false},{"title":"style2.jpg <span style='color:#111;'> 107.86KB </span>","children":null,"spread":false},{"title":"elon_musk.jpg <span style='color:#111;'> 23.83KB </span>","children":null,"spread":false},{"title":"16_motion-trace.png <span style='color:#111;'> 15.09KB </span>","children":null,"spread":false},{"title":"12_adversarial_noise_flowchart.png <span style='color:#111;'> 317.84KB </span>","children":null,"spread":false},{"title":"16_q-values-details.svg <span style='color:#111;'> 40.21KB </span>","children":null,"spread":false},{"title":"16_flowchart.png <span style='color:#111;'> 151.11KB </span>","children":null,"spread":false},{"title":"style7.jpg <span style='color:#111;'> 91.28KB </span>","children":null,"spread":false},{"title":"parrot.jpg <span style='color:#111;'> 69.85KB </span>","children":null,"spread":false},{"title":"13_visual_analysis_flowchart.svg <span style='color:#111;'> 471.92KB </span>","children":null,"spread":false},{"title":"zc.jpg <span style='color:#111;'> 994.99KB </span>","children":null,"spread":false},{"title":"08_transfer_learning_flowchart.png <span style='color:#111;'> 178.91KB </span>","children":null,"spread":false},{"title":"parrot_cropped1.jpg <span style='color:#111;'> 36.22KB </span>","children":null,"spread":false},{"title":"02_convolution.svg <span style='color:#111;'> 79.52KB </span>","children":null,"spread":false},{"title":"14_deepdream_recursive_flowchart.svg <span style='color:#111;'> 1.84MB </span>","children":null,"spread":false},{"title":"15_style_transfer_flowchart.svg <span style='color:#111;'> 651.34KB </span>","children":null,"spread":false},{"title":"06_network_flowchart.png <span style='color:#111;'> 478.45KB </span>","children":null,"spread":false},{"title":"16_q-values-details.png <span style='color:#111;'> 98.98KB </span>","children":null,"spread":false},{"title":"style4.jpg <span style='color:#111;'> 69.88KB </span>","children":null,"spread":false},{"title":"16_problem.png <span style='color:#111;'> 61.06KB </span>","children":null,"spread":false},{"title":"16_problem.svg <span style='color:#111;'> 49.01KB </span>","children":null,"spread":false},{"title":"16_flowchart.svg <span style='color:#111;'> 60.92KB </span>","children":null,"spread":false},{"title":"parrot_cropped3.jpg <span style='color:#111;'> 33.36KB </span>","children":null,"spread":false},{"title":"14_deepdream_flowchart.png <span style='color:#111;'> 493.41KB </span>","children":null,"spread":false},{"title":"16_q-values-simple.svg <span style='color:#111;'> 51.99KB </span>","children":null,"spread":false},{"title":"16_training_stability.png <span style='color:#111;'> 76.29KB </span>","children":null,"spread":false},{"title":"13_visual_analysis_flowchart.png <span style='color:#111;'> 859.45KB </span>","children":null,"spread":false},{"title":"09_transfer_learning_flowchart.png <span style='color:#111;'> 695.29KB </span>","children":null,"spread":false},{"title":"11_adversarial_examples_flowchart.png <span style='color:#111;'> 1.03MB </span>","children":null,"spread":false},{"title":"02_network_flowchart.svg <span style='color:#111;'> 411.79KB </span>","children":null,"spread":false},{"title":"dog1.jpg <span style='color:#111;'> 6.79KB </span>","children":null,"spread":false},{"title":"02_convolution.png <span style='color:#111;'> 60.74KB </span>","children":null,"spread":false},{"title":"12_adversarial_noise_flowchart.svg <span style='color:#111;'> 67.06KB </span>","children":null,"spread":false},{"title":"willy_wonka_old.jpg <span style='color:#111;'> 37.29KB </span>","children":null,"spread":false},{"title":"elon_musk_100x100.jpg <span style='color:#111;'> 6.40KB </span>","children":null,"spread":false},{"title":"11_adversarial_examples_flowchart.svg <span style='color:#111;'> 846.69KB </span>","children":null,"spread":false},{"title":"16_q-values-simple.png <span style='color:#111;'> 71.73KB </span>","children":null,"spread":false},{"title":"giger.jpg <span style='color:#111;'> 358.54KB </span>","children":null,"spread":false},{"title":"style6.jpg <span style='color:#111;'> 38.42KB </span>","children":null,"spread":false},{"title":"14_deepdream_recursive_flowchart.png <span style='color:#111;'> 1.37MB </span>","children":null,"spread":false},{"title":"style9.jpg <span style='color:#111;'> 126.55KB </span>","children":null,"spread":false},{"title":"willy_wonka_new.jpg <span style='color:#111;'> 29.44KB </span>","children":null,"spread":false},{"title":"14_deepdream_flowchart.svg <span style='color:#111;'> 435.57KB </span>","children":null,"spread":false},{"title":"06_network_flowchart.svg <span style='color:#111;'> 182.41KB </span>","children":null,"spread":false},{"title":"07_inception_flowchart.png <span style='color:#111;'> 338.71KB </span>","children":null,"spread":false},{"title":"cxr.jpg <span style='color:#111;'> 998.67KB </span>","children":null,"spread":false}],"spread":false},{"title":"test.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"inception","children":[{"title":"cropped_panda.jpg <span style='color:#111;'> 2.62KB </span>","children":null,"spread":false},{"title":"imagenet_2012_challenge_label_map_proto.pbtxt <span style='color:#111;'> 63.46KB </span>","children":null,"spread":false},{"title":"inception-2015-12-05.tgz <span style='color:#111;'> 84.81MB </span>","children":null,"spread":false},{"title":"imagenet_synset_to_human_label_map.txt <span style='color:#111;'> 724.02KB </span>","children":null,"spread":false},{"title":"LICENSE <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 6.00KB </span>","children":null,"spread":false},{"title":"classify_image_graph_def.pb <span style='color:#111;'> 91.24MB </span>","children":null,"spread":false}],"spread":true},{"title":"__pycache__","children":[{"title":"cache.cpython-36.pyc <span style='color:#111;'> 2.79KB </span>","children":null,"spread":false},{"title":"inception.cpython-36.pyc <span style='color:#111;'> 12.11KB </span>","children":null,"spread":false},{"title":"download.cpython-36.pyc <span style='color:#111;'> 1.70KB </span>","children":null,"spread":false}],"spread":true},{"title":"inception.py <span style='color:#111;'> 21.67KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 12.00KB </span>","children":null,"spread":false},{"title":"cache.py <span style='color:#111;'> 4.65KB </span>","children":null,"spread":false},{"title":"download.py <span style='color:#111;'> 3.09KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • 爱看剧的码农 :
    挺好不错的
    2019-09-20
  • 林至简 :
    你好,这个代码有对应的blog讲解吗?
    2019-04-01

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明