[{"title":"( 7 个子文件 10.72MB ) 基于Python机器学习算法小分子药性预测(岭回归+随机森林回归+极端森林回归+加权平均融合模型)","children":[{"title":"基于Python机器学习算法小分子药性预测(3种机器学习算法融合)","children":[{"title":"Molecule_prediction_20200312","children":[{"title":"train_0312.csv <span style='color:#111;'> 64.46MB </span>","children":null,"spread":false},{"title":"df.csv <span style='color:#111;'> 85.12MB </span>","children":null,"spread":false},{"title":"features.csv <span style='color:#111;'> 84.73MB </span>","children":null,"spread":false},{"title":"temp.py <span style='color:#111;'> 1.32KB </span>","children":null,"spread":false},{"title":"result.csv <span style='color:#111;'> 36.00KB </span>","children":null,"spread":false},{"title":"molecule.ipynb <span style='color:#111;'> 298.13KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"未命名-checkpoint.ipynb <span style='color:#111;'> 296.52KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}],"spread":true}]