统计学习方法及代码实现(Python)

上传者: 30121457 | 上传时间: 2021-06-15 16:38:09 | 文件大小: 17.26MB | 文件类型: ZIP
全面系统地介绍了统计学习的主要方法,特别是监督学习方法,包括感知机、k近邻法、朴素贝叶斯法、决策树、逻辑斯谛回归与最大熵模型、支持向量机、提升方法、EM算法、隐马尔可夫模型和条件随机场等。除第1章概论和最后一章总结外,每章介绍一种方法。叙述从具体问题或实例入手,由浅入深,阐明思路,给出必要的数学推导,便于读者掌握统计学习方法的实质,学会运用。为满足读者进一步学习的需要,书中还介绍了一些相关研究,给出了少量习题,列出了主要参考文献。

文件下载

资源详情

[{"title":"( 19 个子文件 17.26MB ) 统计学习方法及代码实现(Python)","children":[{"title":"统计学习方法及代码实现(Python)","children":[{"title":"统计学习方法.pdf <span style='color:#111;'> 17.56MB </span>","children":null,"spread":false},{"title":"code","children":[{"title":"readme.md <span style='color:#111;'> 555B </span>","children":null,"spread":false},{"title":"gongzhong.jpg <span style='color:#111;'> 8.06KB </span>","children":null,"spread":false},{"title":"第9章 EM算法及其推广(EM)","children":[{"title":"em.ipynb <span style='color:#111;'> 6.92KB </span>","children":null,"spread":false}],"spread":true},{"title":"第11章 条件随机场(CRF)","children":[{"title":"CRF.ipynb <span style='color:#111;'> 3.15KB </span>","children":null,"spread":false}],"spread":true},{"title":"第1章 统计学习方法概论(LeastSquaresMethod)","children":[{"title":"least_sqaure_method.ipynb <span style='color:#111;'> 116.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"第5章 决策树(DecisonTree)","children":[{"title":"DT.ipynb <span style='color:#111;'> 35.75KB </span>","children":null,"spread":false},{"title":"Decision Tree (ID3 剪枝) <span style='color:#111;'> 7.28KB </span>","children":null,"spread":false},{"title":"mytree.pdf <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"第2章 感知机(Perceptron)","children":[{"title":"Iris_perceptron.ipynb <span style='color:#111;'> 52.69KB </span>","children":null,"spread":false}],"spread":true},{"title":"第7章 支持向量机(SVM)","children":[{"title":"support-vector-machine.ipynb <span style='color:#111;'> 27.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"第3章 k近邻法(KNearestNeighbors)","children":[{"title":"KNN.ipynb <span style='color:#111;'> 60.21KB </span>","children":null,"spread":false},{"title":"KDT.py <span style='color:#111;'> 3.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"第10章 隐马尔可夫模型(HMM)","children":[{"title":"HMM.ipynb <span style='color:#111;'> 12.61KB </span>","children":null,"spread":false}],"spread":true},{"title":"第4章 朴素贝叶斯(NaiveBayes)","children":[{"title":"GaussianNB.ipynb <span style='color:#111;'> 8.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"第6章 逻辑斯谛回归(LogisticRegression)","children":[{"title":"LR.ipynb <span style='color:#111;'> 39.76KB </span>","children":null,"spread":false},{"title":"最大熵模型 IIS.py <span style='color:#111;'> 4.25KB </span>","children":null,"spread":false}],"spread":false},{"title":"第8章 提升方法(AdaBoost)","children":[{"title":"Adaboost.ipynb <span style='color:#111;'> 24.45KB </span>","children":null,"spread":false}],"spread":false}],"spread":false},{"title":"readme.txt <span style='color:#111;'> 17B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • peterhao89 :
    书非常清楚,代码也有,是真实的!
    2021-05-29

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明