大数据环境下基于决策树的恶意URL检测模型

上传者: 28339273 | 上传时间: 2021-05-05 13:17:31 | 文件大小: 279KB | 文件类型: PDF
恶意网址URL检测一直是信息安全防御技术领域的研究热点之一。针对传统恶意URL检测技术无法自主探测未知URL,并且缺乏适应大数据时代发展的能力等问题,设计并实现了一种基于大数据技术,结合决策树算法与黑白名单技术的恶意URL检测模型。该模型基于Spark分布式计算框架,利用已知URL训练集提取特征、训练决策树分类模型,然后用已有分类模型对黑白名单无法检测出的URL进行分类预测,达到检测目的。实验证明,构建的检测模型具有很好的检测效果和稳定性。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明