基于Python实现的推荐系统实践代码 含数据源和源代码.rar

上传者: 27595745 | 上传时间: 2021-08-15 01:58:10 | 文件大小: 37.75MB | 文件类型: RAR
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from math import sqrt critics={'Lisa Rose': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'Superman Returns': 3.5, 'You, Me and Dupree': 2.5, 'The Night Listener': 3.0}, 'Gene Seymour': {'Lady in the Water': 3.0, 'Snakes on a Plane': 3.5, 'Just My Luck': 1.5, 'Superman Returns': 5.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 3.5}, 'Michael Phillips': {'Lady in the Water': 2.5, 'Snakes on a Plane': 3.0, 'Superman Returns': 3.5, 'The Night Listener': 4.0}, 'Claudia Puig': {'Snakes on a Plane': 3.5, 'Just My Luck': 3.0, 'The Night Listener': 4.5, 'Superman Returns': 4.0, 'You, Me and Dupree': 2.5}, 'Mick LaSalle': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'Just My Luck': 2.0, 'Superman Returns': 3.0, 'The Night Listener': 3.0, 'You, Me and Dupree': 2.0}, 'Jack Matthews': {'Lady in the Water': 3.0, 'Snakes on a Plane': 4.0, 'The Night Listener': 3.0, 'Superman Returns': 5.0, 'You, Me and Dupree': 3.5}, 'Toby': {'Snakes on a Plane':4.5,'You, Me and Dupree':1.0,'Superman Returns':4.0}} df_critics=pd.DataFrame(critics) ##欧氏距离 def sim_distance(prefs,person1,person2): si={} for item in prefs[person1]: if item in prefs[person2]: si[item]=1 if len(si)==0: return 0 sum_of_squares=sum([pow(prefs[person1][item]-prefs[person2][item],2) for item in prefs[person1] if item in prefs[person2]]) return 1/(1+sqrt(sum_of_squares)) ##numpy pandas 方法 def sim_distance2(prefs,person1,person2): return 1/(1+np.linalg.norm(prefs[person1]-prefs[person2])) ##皮尔逊相关系数 def sim_pearson(prefs,p1,p2): si={} for item in prefs[p1]: if item in prefs[p2]: si[item]=1 n=len(si) if n==0: return 1 ##对所有偏好求和 sum1=sum([prefs[p1][it] for it in si]) sum2=sum([prefs[p2][it] for it in si]) ##求平方和 sum1Sq=sum([pow(prefs[p1][it]

文件下载

资源详情

[{"title":"( 7 个子文件 37.75MB ) 基于Python实现的推荐系统实践代码 含数据源和源代码.rar","children":[{"title":"基于Python实现的推荐系统实践代码 含数据源和源代码","children":[{"title":"UIR.csv <span style='color:#111;'> 21.37MB </span>","children":null,"spread":false},{"title":"tuijian.py <span style='color:#111;'> 11.53KB </span>","children":null,"spread":false},{"title":"UIRY.csv <span style='color:#111;'> 21.37MB </span>","children":null,"spread":false},{"title":"TSFL.csv <span style='color:#111;'> 134.57MB </span>","children":null,"spread":false},{"title":"UIRYUAN.csv <span style='color:#111;'> 23.36MB </span>","children":null,"spread":false},{"title":"recommendations.py <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'> 36.67MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明