完整版 可直接运行 基于BP神经网络的智能计算故障诊断系统设计 MATLAB实现 源代码程序 含GUI设计和使用教程.rar

上传者: 27595745 | 上传时间: 2022-01-05 20:07:17 | 文件大小: 1.5MB | 文件类型: RAR
现有训练集数据,1000 × 7,如下: xxxxxxxxxxxxxxxxxxxx 有测试集数据,100 × 7,如下: xxxxxxxxxxxxxxxxxxxx 以上数据分别是从某系统采集的数据,  训练数据集中,分别是采集的数据和标注结果,其中1、2分别表示该系统有无故障;  测试数据集中,分别是采集的数据和真实结果,其中1、2分别表示该系统有无故障; 现在需要使用训练数据集训练BP神经网络,然后用训练好的神经网络对测试数据集进行测试,并与真实结果进行对比,最终分析出神经网络的性能。 % --- Executes on button press in pushbutton6. function pushbutton6_Callback(hObject, eventdata, handles) % hObject handle to pushbutton6 (see GCBO) % eventdata reserved - to be defined in a future version of MATLAB % handles structure with handles and user data (see GUIDATA) global output_test inputn_train outputn_train inputn_test ... outputps BPoutput_test xunlian_num Error input_train output_train %创建网络 %获得gui_set中值 num_yinhan=str2num(get(findobj('tag','edit_yinhan'),'string')); TF=get(findobj('tag','transfer'),'string'); %传递函数 valueTF=get(findobj('tag','transfer'),'value'); TF=TF{valueTF}; BTF=get(findobj('tag','train'),'string'); %训练函数 valueBTF=get(findobj('tag','train'),'value'); BTF=BTF{valueBTF}; BLF=get(findobj('tag','learn'),'string'); %学习函数 valueBLF=get(findobj('tag','learn'),'value'); BLF=BLF{valueBLF}; tic;%启动一个定时器 net=newff(inputn_train,outputn_train,num_yinhan,{TF},BTF,BLF); net.trainParam.epochs=str2num(get(findobj('tag','cishu'),'string')); net.trainParam.goal=str2num(get(findobj('tag','goal'),'string')); net.trainParam.lr=str2num(get(findobj('tag','rate'),'string')); net=train(net,inputn_train,outputn_train); an=sim(net,inputn_test); t=toc;%关闭定时器,获取程序运行时间 %网络输出反归一化

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明