2020基于多任务的医疗实体识别论文.rar

上传者: 27549113 | 上传时间: 2021-05-28 15:01:03 | 文件大小: 14.52MB | 文件类型: RAR
电子病案命名实体识别(NER)任务是指自动识别病案文本中的各种命名实体。中国临床NER仍然是一个巨大的挑战。其中一个主要原因就是中文分词会导致下游作品错误。此外,现有的方法只使用一般领域的信息,没有考虑到来自医学领域的知识。

文件下载

资源详情

[{"title":"( 14 个子文件 14.52MB ) 2020基于多任务的医疗实体识别论文.rar","children":[{"title":"最新","children":[{"title":"Analyzing the Effect of Multi-task Learning for.pdf <span style='color:#111;'> 298.93KB </span>","children":null,"spread":false},{"title":"Towards Chinese.pdf <span style='color:#111;'> 1.69MB </span>","children":null,"spread":false},{"title":"A Neural Multi-Task Learning Framework to Jointly Model.pdf <span style='color:#111;'> 449.19KB </span>","children":null,"spread":false},{"title":"An Empirical Study of Multi-Task Learning on BERT.pdf <span style='color:#111;'> 544.31KB </span>","children":null,"spread":false},{"title":"A Weak Supervision Approach.pdf <span style='color:#111;'> 483.29KB </span>","children":null,"spread":false},{"title":"An attention-based multi-task model for named entity recognition and intent.pdf <span style='color:#111;'> 1.16MB </span>","children":null,"spread":false},{"title":"Named Entity Recognition.pdf <span style='color:#111;'> 675.43KB </span>","children":null,"spread":false},{"title":"Span-Level Model for Relation Extraction.pdf <span style='color:#111;'> 264.75KB </span>","children":null,"spread":false},{"title":"Adversarial training based lattice LSTM for Chinese clinical named entity.pdf <span style='color:#111;'> 1.58MB </span>","children":null,"spread":false},{"title":"Biomedical Named-Entity Recognition by.pdf <span style='color:#111;'> 840.24KB </span>","children":null,"spread":false},{"title":"Chinese Clinical Named Entity Recognition with.pdf <span style='color:#111;'> 285.64KB </span>","children":null,"spread":false},{"title":"A Hybrid Method to Extract Clinical Information.pdf <span style='color:#111;'> 10.75MB </span>","children":null,"spread":false},{"title":"1-s2.0-S1877050920319785-main.pdf <span style='color:#111;'> 474.31KB </span>","children":null,"spread":false},{"title":"Information Retrieval and Extraction on COVID-19 Clinical Articles.pdf <span style='color:#111;'> 104.36KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明