ICLR 2020 Bengio 一作论文:因果机制、元学习与模型泛化如何产生关联?.zip

上传者: 27206435 | 上传时间: 2024-03-18 08:53:54 | 文件大小: 727KB | 文件类型: ZIP
Yoshua Bengio 等人基于学习器适应新分布的速度提出一种元学习因果结构,假设新分布由干预、智能体动作以及其它非稳态(non-stationarity)导致的稀疏分布变化引起,由此得出“正确的因果结构选择 会使学习器**更快地适应修改后的分布**”。该假设的研究将“适应修改后分布的速度”作为元学习的目标,表明“这可用于决定两个观测变量之间的因果关系”。研究结论的价值即特点和优势发现是,分布变化无需对应标准干预,学习器不具备关于干预的直接知识。因果结构可通过连续变量进行参数化,并以端到端的形式学得。研究探讨了想法的如何应用,来满足“独立机制 以及 动作和非稳态 导致的 机制内微小稀疏变化 ”的假设。

文件下载

资源详情

[{"title":"( 2 个子文件 727KB ) ICLR 2020 Bengio 一作论文:因果机制、元学习与模型泛化如何产生关联?.zip","children":[{"title":"ICLR 2020 Bengio 一作论文:因果机制、元学习与模型泛化如何产生关联?.md <span style='color:#111;'> 10.06KB </span>","children":null,"spread":false},{"title":"1901.10912:A Meta-Transfer Objective for Learning to Disentangle Causal.pdf <span style='color:#111;'> 871.59KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明