truth discovery simulation.zip

上传者: 18436507 | 上传时间: 2021-09-09 20:55:43 | 文件大小: 3.5MB | 文件类型: ZIP
真值发现方法,通过估计每个信息源的可靠度然后整合相关信息,可以从众多信息中推断出最值得相信的信息。本报告所述的真值发现方法基于凸优化理论,其目标函数衡量提供的信息与识别的信息的加权距离,通过最小化此距离函数使聚合信息接近真值,运用优化理论解决并提出有效的OBTD算法,并根据实际数据常有的长尾现象,提出更加可靠的置信度感知真值发现算法

文件下载

资源详情

[{"title":"( 32 个子文件 3.5MB ) truth discovery simulation.zip","children":[{"title":"truth discovery simulation","children":[{"title":"RMSE.m <span style='color:#111;'> 102B </span>","children":null,"spread":false},{"title":"floorplanstatistics.m <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":".DS_Store <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"pop_sourceremove_rmse_test.m <span style='color:#111;'> 5.34KB </span>","children":null,"spread":false},{"title":"popdataPreprocessing.m <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"CATD_city_population.m <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"CATD_floorplan.m <span style='color:#111;'> 4.07KB </span>","children":null,"spread":false},{"title":"reference","children":[{"title":"CATD-A confidence-aware approach for truth discovery on long-tail data.pdf <span style='color:#111;'> 2.70MB </span>","children":null,"spread":false},{"title":"SDR-Based Omnidirectional Beamforming design in Massive MIMO-À’∂¨¡º.pdf <span style='color:#111;'> 574.38KB </span>","children":null,"spread":false}],"spread":true},{"title":"popstatistics.m <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"multi_source_long_tail_simu.m <span style='color:#111;'> 98B </span>","children":null,"spread":false},{"title":"CRH_floorplan.m <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"MAE.m <span style='color:#111;'> 93B </span>","children":null,"spread":false},{"title":"popdataPreprocessing_forlongtailtest.m <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false},{"title":"datasets","children":[{"title":"step_dataset.txt <span style='color:#111;'> 8.70KB </span>","children":null,"spread":false},{"title":"step_ground_truth.txt <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"popTuples.txt <span style='color:#111;'> 14.55MB </span>","children":null,"spread":false},{"title":"popAnswersOut.txt <span style='color:#111;'> 20.29KB </span>","children":null,"spread":false}],"spread":false},{"title":"run_city_population_CATD.m <span style='color:#111;'> 4.93KB </span>","children":null,"spread":false},{"title":"popdata_source_remove.m <span style='color:#111;'> 962B </span>","children":null,"spread":false},{"title":"importpopdata.m <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"simulation images","children":[{"title":"long-tail-populations.png <span style='color:#111;'> 15.82KB </span>","children":null,"spread":false},{"title":"population over source coverage.png <span style='color:#111;'> 17.18KB </span>","children":null,"spread":false},{"title":"long-tail-floorplan.png <span style='color:#111;'> 12.42KB </span>","children":null,"spread":false},{"title":"sourceerrordist-floorplan.png <span style='color:#111;'> 15.90KB </span>","children":null,"spread":false},{"title":"RMSE over sourcenumber.png <span style='color:#111;'> 15.63KB </span>","children":null,"spread":false}],"spread":false},{"title":"run_floorplan.m <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"附件说明.pdf <span style='color:#111;'> 72.64KB </span>","children":null,"spread":false},{"title":"ErrorRate.m <span style='color:#111;'> 162B </span>","children":null,"spread":false},{"title":"run_city_population_OBTD.m <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"OBTD_city_population.m <span style='color:#111;'> 6.36KB </span>","children":null,"spread":false},{"title":"gaussian_assumption_validation.m <span style='color:#111;'> 438B </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明