机器学习-零售商品销售预测(基于pyspark的7种回归预测,包含完整代码和数据)

上传者: qq475225253 | 上传时间: 2024-04-30 14:56:19 | 文件大小: 2.91MB | 文件类型: ZIP
案例基于pyspark开发,使用了线性,Ridge,LASSO,Elastic Net,决策树,梯度提升树以及随机森林7种回归模型完成预测,并使用了均方差和R2评估指数对七种模型效果进行了比较分析

文件下载

资源详情

[{"title":"( 33 个子文件 2.91MB ) 机器学习-零售商品销售预测(基于pyspark的7种回归预测,包含完整代码和数据)","children":[{"title":"零售企业商品销售预测","children":[{"title":"代码","children":[{"title":"data_4.csv <span style='color:#111;'> 2.05MB </span>","children":null,"spread":false},{"title":"0-explore_data.py <span style='color:#111;'> 1009B </span>","children":null,"spread":false},{"title":"2-fix_abnormal.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"6-3-lar.py <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"6-7-rf.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"data_1.csv <span style='color:#111;'> 1.55MB </span>","children":null,"spread":false},{"title":"5-finish_preprocess.py <span style='color:#111;'> 1.10KB </span>","children":null,"spread":false},{"title":"data","children":[{"title":"train.csv <span style='color:#111;'> 849.16KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 515.34KB </span>","children":null,"spread":false}],"spread":true},{"title":"train_model.csv <span style='color:#111;'> 653.71KB </span>","children":null,"spread":false},{"title":"test_modified.csv <span style='color:#111;'> 640.26KB </span>","children":null,"spread":false},{"title":"3-add_new.py <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"6-5-dt.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"test_model.csv <span style='color:#111;'> 280.66KB </span>","children":null,"spread":false},{"title":"6-2-rr.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"6-6-gbt.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false},{"title":"4-one_hot.py <span style='color:#111;'> 837B </span>","children":null,"spread":false},{"title":"train_modified.csv <span style='color:#111;'> 1.02MB </span>","children":null,"spread":false},{"title":".idea","children":[{"title":"代码.iml <span style='color:#111;'> 291B </span>","children":null,"spread":false},{"title":"workspace.xml <span style='color:#111;'> 8.09KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 188B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":false},{"title":"modules.xml <span style='color:#111;'> 271B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"aws.xml <span style='color:#111;'> 294B </span>","children":null,"spread":false}],"spread":false},{"title":"6-4-enl.py <span style='color:#111;'> 2.15KB </span>","children":null,"spread":false},{"title":"data_3.csv <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'> 1.53MB </span>","children":null,"spread":false},{"title":"data_2.csv <span style='color:#111;'> 1.58MB </span>","children":null,"spread":false},{"title":"6-1-lr.py <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"1-fix_nan.py <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false}],"spread":false},{"title":"数据","children":[{"title":"train.csv <span style='color:#111;'> 849.16KB </span>","children":null,"spread":false},{"title":"test.csv <span style='color:#111;'> 515.34KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明