上传者: olivia_ye
|
上传时间: 2021-06-06 16:20:38
|
文件大小: 1.69MB
|
文件类型: PDF
在手掌静脉图像采集的过程中易受手掌摆放姿势、光源条件等外界因素的影响,造成识别准确度欠佳。为了提高手掌静脉图像识别的精准度和鲁棒性,提出一种基于改进AlexNet深度卷积神经网络的手掌静脉识别方法。该方法首先通过图像分割、指根关键点定位、感兴趣区域图像提取等三个阶段对采集的手掌静脉图像进行预处理;其次,针对人体手掌静脉识别的应用场景,通过适当调整经典的AlexNet卷积神经网络的结构并对卷积层的输出进行批标准化操作,同时,将深度学习理论中的注意力机制应用到该网络中,进而优化AlexNet神经网络,使用优化后的AlexNet神经网络对预处理后的图像自动进行特征提取、分类和识别;最后,在公开的Polyu和CASIA多光谱掌纹数据集上进行大量的实验,达到的最佳识别率分别为99.93%和99.51%,实验验证了所提方法的有效性