[{"title":"( 68 个子文件 13.65MB ) deep_learning_from_scratch_斋藤康毅","children":[{"title":"685835 深度学习入门:基于Python的理论与实现.pdf 代码","children":[{"title":"深度学习入门:基于Python的理论与实现.pdf+代码","children":[{"title":"深度学习入门:基于 Python 的理论与实现.pdf <span style='color:#111;'> 10.74MB </span>","children":null,"spread":false},{"title":"源码","children":[{"title":".gitignore <span style='color:#111;'> 37B </span>","children":null,"spread":false},{"title":"ch03","children":[{"title":"neuralnet_mnist.py <span style='color:#111;'> 1.06KB </span>","children":null,"spread":false},{"title":"sig_step_compare.py <span style='color:#111;'> 361B </span>","children":null,"spread":false},{"title":"sample_weight.pkl <span style='color:#111;'> 177.59KB </span>","children":null,"spread":false},{"title":"step_function.py <span style='color:#111;'> 267B </span>","children":null,"spread":false},{"title":"relu.py <span style='color:#111;'> 198B </span>","children":null,"spread":false},{"title":"sigmoid.py <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"neuralnet_mnist_batch.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"mnist_show.py <span style='color:#111;'> 551B </span>","children":null,"spread":false}],"spread":true},{"title":"dataset","children":[{"title":"lena_gray.png <span style='color:#111;'> 41.59KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"lena.png <span style='color:#111;'> 115.20KB </span>","children":null,"spread":false},{"title":"mnist.py <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false}],"spread":true},{"title":"LICENSE.md <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ch04","children":[{"title":"gradient_simplenet.py <span style='color:#111;'> 662B </span>","children":null,"spread":false},{"title":"gradient_1d_20190731_173642.py <span style='color:#111;'> 497B </span>","children":null,"spread":false},{"title":"gradient_method.py <span style='color:#111;'> 755B </span>","children":null,"spread":false},{"title":"two_layer_net.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"gradient_2d.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"train_neuralnet.py <span style='color:#111;'> 1.68KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch05","children":[{"title":"buy_apple_orange.py <span style='color:#111;'> 988B </span>","children":null,"spread":false},{"title":"two_layer_net.py <span style='color:#111;'> 2.43KB </span>","children":null,"spread":false},{"title":"gradient_check.py <span style='color:#111;'> 677B </span>","children":null,"spread":false},{"title":"buy_apple.py <span style='color:#111;'> 500B </span>","children":null,"spread":false},{"title":"layer_naive.py <span style='color:#111;'> 557B </span>","children":null,"spread":false},{"title":"train_neuralnet.py <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch02","children":[{"title":"nand_gate.py <span style='color:#111;'> 360B </span>","children":null,"spread":false},{"title":"and_gate.py <span style='color:#111;'> 357B </span>","children":null,"spread":false},{"title":"or_gate.py <span style='color:#111;'> 354B </span>","children":null,"spread":false},{"title":"xor_gate.py <span style='color:#111;'> 331B </span>","children":null,"spread":false}],"spread":true},{"title":"ch08","children":[{"title":"deep_convnet_params.pkl <span style='color:#111;'> 966.16KB </span>","children":null,"spread":false},{"title":"awesome_net.py <span style='color:#111;'> 27B </span>","children":null,"spread":false},{"title":"half_float_network.py <span style='color:#111;'> 766B </span>","children":null,"spread":false},{"title":"deep_convnet.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"train_deepnet.py <span style='color:#111;'> 699B </span>","children":null,"spread":false},{"title":"misclassified_mnist.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.md <span style='color:#111;'> 1.04KB </span>","children":null,"spread":false},{"title":"common","children":[{"title":"trainer.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"multi_layer_net_extend.py <span style='color:#111;'> 6.52KB </span>","children":null,"spread":false},{"title":"functions.py <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"gradient.py <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"multi_layer_net.py <span style='color:#111;'> 5.41KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 0B </span>","children":null,"spread":false},{"title":"layers.py <span style='color:#111;'> 7.51KB </span>","children":null,"spread":false},{"title":"util.py <span style='color:#111;'> 2.53KB </span>","children":null,"spread":false},{"title":"optimizer.py <span style='color:#111;'> 3.89KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch07","children":[{"title":"params.pkl <span style='color:#111;'> 3.31MB </span>","children":null,"spread":false},{"title":"simple_convnet.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false},{"title":"apply_filter.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"visualize_filter.py <span style='color:#111;'> 801B </span>","children":null,"spread":false},{"title":"gradient_check.py <span style='color:#111;'> 544B </span>","children":null,"spread":false},{"title":"train_convnet.py <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false}],"spread":false},{"title":"ch01","children":[{"title":"simple_graph.py <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"man_20190731_173639.py <span style='color:#111;'> 318B </span>","children":null,"spread":false},{"title":"hungry.py <span style='color:#111;'> 21B </span>","children":null,"spread":false},{"title":"sin_graph.py <span style='color:#111;'> 164B </span>","children":null,"spread":false},{"title":"sin_cos_graph.py <span style='color:#111;'> 381B </span>","children":null,"spread":false},{"title":"img_show_20190731_173639.py <span style='color:#111;'> 162B </span>","children":null,"spread":false}],"spread":false},{"title":"ch06","children":[{"title":"batch_norm_gradient_check.py <span style='color:#111;'> 773B </span>","children":null,"spread":false},{"title":"weight_init_compare.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"optimizer_compare_mnist.py <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"weight_init_activation_histogram.py <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false},{"title":"batch_norm_test.py <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"overfit_weight_decay.py <span style='color:#111;'> 1.98KB </span>","children":null,"spread":false},{"title":"overfit_dropout.py <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"optimizer_compare_naive.py <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"hyperparameter_optimization.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false}],"spread":false}],"spread":false}],"spread":true}],"spread":true}],"spread":true}]