基于 LSTM 循环神经网络的电力系统负荷预测分析.zip

上传者: m0_74824254 | 上传时间: 2024-04-01 22:00:47 | 文件大小: 462KB | 文件类型: ZIP
基于 LSTM 循环神经网络的电力系统负荷预测分析。建立 CART 回归树以及 LSTM 模型对该地区未来 10 天间隔 15 分钟负荷以及未来 3 个月负荷最大最小值进行预测。将行业数据分为大工业用电最大值、大工业用电最小 值;非普工业最大值、非普工业最小值;普通工业最大…

文件下载

资源详情

[{"title":"( 20 个子文件 462KB ) 基于 LSTM 循环神经网络的电力系统负荷预测分析.zip","children":[{"title":"newname","children":[{"title":"程序","children":[{"title":"程序","children":[{"title":"Q2_1突变点检测","children":[{"title":"tubian.R <span style='color:#111;'> 897B </span>","children":null,"spread":false}],"spread":true},{"title":"Q2_2行业最值预测","children":[{"title":"CART_hangye <span style='color:#111;'> 944B </span>","children":null,"spread":false},{"title":"da01_max.ipynb <span style='color:#111;'> 78.38KB </span>","children":null,"spread":false},{"title":"fei02_max.ipynb <span style='color:#111;'> 82.50KB </span>","children":null,"spread":false},{"title":"shang04_max.ipynb <span style='color:#111;'> 85.42KB </span>","children":null,"spread":false},{"title":"shang04_min.ipynb <span style='color:#111;'> 77.87KB </span>","children":null,"spread":false},{"title":"pu03_max.ipynb <span style='color:#111;'> 83.76KB </span>","children":null,"spread":false},{"title":"da01_min.ipynb <span style='color:#111;'> 79.68KB </span>","children":null,"spread":false},{"title":"pu03_min.ipynb <span style='color:#111;'> 78.89KB </span>","children":null,"spread":false},{"title":"fei02_min.ipynb <span style='color:#111;'> 78.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"Q1_2未来三个月最值","children":[{"title":"CART.py <span style='color:#111;'> 2.03KB </span>","children":null,"spread":false},{"title":"LSTM预测模型.ipynb <span style='color:#111;'> 84.13KB </span>","children":null,"spread":false},{"title":"predict_3_month_max_min.R <span style='color:#111;'> 1.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"Q1_1未来十天","children":[{"title":"随机森林特征筛选.ipynb <span style='color:#111;'> 10.22KB </span>","children":null,"spread":false},{"title":"LSTM预测模型.ipynb <span style='color:#111;'> 106.18KB </span>","children":null,"spread":false},{"title":"CART10day.py <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true},{"title":"数据预处理","children":[{"title":"ta13addnew.ipynb <span style='color:#111;'> 16.15KB </span>","children":null,"spread":false},{"title":"power_chuli.ipynb <span style='color:#111;'> 94.18KB </span>","children":null,"spread":false},{"title":"weather_chuli.ipynb <span style='color:#111;'> 37.76KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true},{"title":"README.md <span style='color:#111;'> 779B </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明