yolov8结合se注意力机制提升检测效果

上传者: m0_67647321 | 上传时间: 2025-05-20 10:40:43 | 文件大小: 2.06MB | 文件类型: ZIP
卷积神经网络建立在卷积运算的基础上,它通过在局部感受野内将空间和通道信息融合在一起来提取信息特征。为了提高网络的表示能力,最近的几种方法已经显示了增强空间编码的好处。在这项工作中,我们专注于通道关系,并提出了一种新颖的架构单元,我们将其称为“挤压和激励”(SE)块,它通过显式建模通道之间的相互依赖性来自适应地重新校准通道方面的特征响应。我们证明,通过将这些块堆叠在一起,我们可以构建在具有挑战性的数据集上具有极好的泛化能力的 SENet 架构。至关重要的是,我们发现 SE 模块能够以最小的额外计算成本为现有最先进的深度架构带来显着的性能改进。 SENets 构成了我们 ILSVRC 2017 分类提交的基础,该分类提交赢得了第一名,并将 top-5 错误率显着降低至 2.251%,与 2016 年获胜条目相比相对提高了约 25%。

文件下载

资源详情

[{"title":"( 267 个子文件 2.06MB ) yolov8结合se注意力机制提升检测效果","children":[{"title":"bus.jpg <span style='color:#111;'> 134.20KB </span>","children":null,"spread":false},{"title":"zidane.jpg <span style='color:#111;'> 49.25KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 13.10KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 3.02KB </span>","children":null,"spread":false},{"title":"README.md <span style='color:#111;'> 2.08KB </span>","children":null,"spread":false},{"title":"exporter.py <span style='color:#111;'> 48.97KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 45.97KB </span>","children":null,"spread":false},{"title":"augment.py <span style='color:#111;'> 45.62KB </span>","children":null,"spread":false},{"title":"tasks.py <span style='color:#111;'> 35.67KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 32.92KB </span>","children":null,"spread":false},{"title":"trainer.py <span style='color:#111;'> 31.91KB </span>","children":null,"spread":false},{"title":"plotting.py <span style='color:#111;'> 30.94KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 30.51KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 28.94KB </span>","children":null,"spread":false},{"title":"tiny_encoder.py <span style='color:#111;'> 28.30KB </span>","children":null,"spread":false},{"title":"autobackend.py <span style='color:#111;'> 26.35KB </span>","children":null,"spread":false},{"title":"checks.py <span style='color:#111;'> 25.35KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 25.13KB </span>","children":null,"spread":false},{"title":"encoders.py <span style='color:#111;'> 24.42KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 23.97KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 23.16KB </span>","children":null,"spread":false},{"title":"results.py <span style='color:#111;'> 22.90KB </span>","children":null,"spread":false},{"title":"loaders.py <span style='color:#111;'> 21.58KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 19.21KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 18.91KB </span>","children":null,"spread":false},{"title":"byte_tracker.py <span style='color:#111;'> 17.95KB </span>","children":null,"spread":false},{"title":"head.py <span style='color:#111;'> 17.89KB </span>","children":null,"spread":false},{"title":"benchmarks.py <span style='color:#111;'> 17.79KB </span>","children":null,"spread":false},{"title":"transformer.py <span style='color:#111;'> 17.48KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 17.41KB </span>","children":null,"spread":false},{"title":"predictor.py <span style='color:#111;'> 16.28KB </span>","children":null,"spread":false},{"title":"prompt.py <span style='color:#111;'> 15.90KB </span>","children":null,"spread":false},{"title":"dataset.py <span style='color:#111;'> 15.64KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 15.59KB </span>","children":null,"spread":false},{"title":"instance.py <span style='color:#111;'> 15.56KB </span>","children":null,"spread":false},{"title":"block.py <span style='color:#111;'> 15.21KB </span>","children":null,"spread":false},{"title":"kalman_filter.py <span style='color:#111;'> 14.50KB </span>","children":null,"spread":false},{"title":"validator.py <span style='color:#111;'> 14.07KB </span>","children":null,"spread":false},{"title":"comet.py <span style='color:#111;'> 13.54KB </span>","children":null,"spread":false},{"title":"tal.py <span style='color:#111;'> 13.35KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 13.00KB </span>","children":null,"spread":false},{"title":"ops.py <span style='color:#111;'> 12.97KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 12.78KB </span>","children":null,"spread":false},{"title":"conv.py <span style='color:#111;'> 12.47KB </span>","children":null,"spread":false},{"title":"converter.py <span style='color:#111;'> 12.16KB </span>","children":null,"spread":false},{"title":"gmc.py <span style='color:#111;'> 12.08KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 11.68KB </span>","children":null,"spread":false},{"title":"tuner.py <span style='color:#111;'> 11.11KB </span>","children":null,"spread":false},{"title":"transformer.py <span style='color:#111;'> 10.90KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 10.41KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 9.36KB </span>","children":null,"spread":false},{"title":"bot_sort.py <span style='color:#111;'> 8.40KB </span>","children":null,"spread":false},{"title":"session.py <span style='color:#111;'> 8.23KB </span>","children":null,"spread":false},{"title":"amg.py <span style='color:#111;'> 7.92KB </span>","children":null,"spread":false},{"title":"decoders.py <span style='color:#111;'> 7.61KB </span>","children":null,"spread":false},{"title":"wb.py <span style='color:#111;'> 6.60KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 6.58KB </span>","children":null,"spread":false},{"title":"build.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 6.46KB </span>","children":null,"spread":false},{"title":"tuner.py <span style='color:#111;'> 6.08KB </span>","children":null,"spread":false},{"title":"clearml.py <span style='color:#111;'> 5.87KB </span>","children":null,"spread":false},{"title":"base.py <span style='color:#111;'> 5.64KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 5.40KB </span>","children":null,"spread":false},{"title":"auth.py <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"files.py <span style='color:#111;'> 5.16KB </span>","children":null,"spread":false},{"title":"dvc.py <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 4.84KB </span>","children":null,"spread":false},{"title":"build.py <span style='color:#111;'> 4.76KB </span>","children":null,"spread":false},{"title":"matching.py <span style='color:#111;'> 4.73KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"mlflow.py <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 4.01KB </span>","children":null,"spread":false},{"title":"triton.py <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 3.77KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 3.71KB </span>","children":null,"spread":false},{"title":"neptune.py <span style='color:#111;'> 3.61KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 3.60KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 3.34KB </span>","children":null,"spread":false},{"title":"hub.py <span style='color:#111;'> 3.27KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.82KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.80KB </span>","children":null,"spread":false},{"title":"tensorboard.py <span style='color:#111;'> 2.76KB </span>","children":null,"spread":false},{"title":"sam.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 2.46KB </span>","children":null,"spread":false},{"title":"track.py <span style='color:#111;'> 2.44KB </span>","children":null,"spread":false},{"title":"dist.py <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"train.py <span style='color:#111;'> 2.22KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"patches.py <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"utils.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"model.py <span style='color:#111;'> 2.09KB </span>","children":null,"spread":false},{"title":"annotator.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"val.py <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"__init__.py <span style='color:#111;'> 1.64KB </span>","children":null,"spread":false},{"title":"predict.py <span style='color:#111;'> 1.59KB </span>","children":null,"spread":false},{"title":"basetrack.py <span style='color:#111;'> 1.57KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明