《基于YOLOv8的智慧农场牲畜异常行为监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip

上传者: m0_65481401 | 上传时间: 2025-10-24 13:17:10 | 文件大小: 24.21MB | 文件类型: ZIP
《基于YOLOv8的智慧农场牲畜异常行为监测系统》是一项结合了深度学习技术和智慧农业的创新项目,旨在通过先进的计算机视觉技术对农场中的牲畜进行实时监控,并识别出异常行为,以提高牲畜养殖的管理水平和动物福利。YOLOv8(You Only Look Once version 8)作为该系统的视觉检测模型,是YOLO系列算法的最新版本,以其速度快、准确度高、易于部署而著称,在处理实时视频流中的目标检测任务方面表现出色。 本系统通过整合源码、可视化界面、完整数据集和部署教程,为用户提供了一套完备的解决方案。用户只需简单部署,便可以运行系统,并进行牲畜行为的实时监测。系统中的可视化界面允许用户直观地查看监测结果,极大地降低了操作复杂性,使得非专业人士也能方便地使用系统。此外,所提供的完整数据集为模型训练提供了必要的标注信息,有助于提高模型的泛化能力和检测效果。 在技术实现方面,模型训练是一个核心环节,涉及到数据预处理、网络结构设计、参数调优和验证等多个步骤。由于YOLOv8的高效性,模型可以在较短的时间内完成训练过程,同时保持较高的准确率。这一点对于要求实时反馈的牲畜行为监测系统来说至关重要。 部署教程的提供,进一步确保了用户即便缺乏深度技术背景,也能够顺利完成系统的搭建和运行。教程可能包括环境配置、软件安装、代码导入、界面操作等方面的内容,确保用户能够按照既定步骤快速上手。 本系统在实际应用中,可广泛适用于牧场、养殖场等农业场景。它可以监测牲畜的运动模式,及时发现疾病、受伤或其他异常行为,从而为牲畜的健康管理提供有力的技术支持。同时,系统还能够帮助农场主更好地安排饲养计划,提升生产效率和质量。 《基于YOLOv8的智慧农场牲畜异常行为监测系统》不仅为智慧农业领域提供了一种高效的监测手段,也展现了计算机视觉技术在非传统领域的巨大潜力和应用价值。通过本系统的部署和使用,有望极大推动农业现代化进程,实现畜牧业的可持续发展。

文件下载

资源详情

[{"title":"( 97 个子文件 24.21MB ) 《基于YOLOv8的智慧农场牲畜异常行为监测系统》(包含源码、可视化界面、完整数据集、部署教程)简单部署即可运行。功能完善、操作简单,适合毕设或课程设计.zip","children":[{"title":"可视化页面设计","children":[{"title":"main.py <span style='color:#111;'> 14.27KB </span>","children":null,"spread":false},{"title":"five_type_det_service.py <span style='color:#111;'> 9.59KB </span>","children":null,"spread":false},{"title":"utils","children":[{"title":"__init__.py <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"loss.py <span style='color:#111;'> 9.69KB </span>","children":null,"spread":false},{"title":"augmentations.py <span style='color:#111;'> 16.63KB </span>","children":null,"spread":false},{"title":"metrics.py <span style='color:#111;'> 14.23KB </span>","children":null,"spread":false},{"title":"myutil.py <span style='color:#111;'> 219B </span>","children":null,"spread":false},{"title":"autoanchor.py <span style='color:#111;'> 7.25KB </span>","children":null,"spread":false},{"title":"general.py <span style='color:#111;'> 45.87KB </span>","children":null,"spread":false},{"title":"activations.py <span style='color:#111;'> 3.37KB </span>","children":null,"spread":false},{"title":"downloads.py <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"plots.py <span style='color:#111;'> 22.33KB </span>","children":null,"spread":false},{"title":"callbacks.py <span style='color:#111;'> 2.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"myutil.cpython-39.pyc <span style='color:#111;'> 466B </span>","children":null,"spread":false},{"title":"plots.cpython-39.pyc <span style='color:#111;'> 19.75KB </span>","children":null,"spread":false},{"title":"general.cpython-39.pyc <span style='color:#111;'> 37.90KB </span>","children":null,"spread":false},{"title":"__init__.cpython-39.pyc <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"torch_utils.cpython-39.pyc <span style='color:#111;'> 16.38KB </span>","children":null,"spread":false},{"title":"metrics.cpython-39.pyc <span style='color:#111;'> 11.06KB </span>","children":null,"spread":false},{"title":"augmentations.cpython-39.pyc <span style='color:#111;'> 13.40KB </span>","children":null,"spread":false},{"title":"dataloaders.cpython-39.pyc <span style='color:#111;'> 41.95KB </span>","children":null,"spread":false},{"title":"downloads.cpython-39.pyc <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false}],"spread":false},{"title":"dataloaders.py <span style='color:#111;'> 53.84KB </span>","children":null,"spread":false},{"title":"torch_utils.py <span style='color:#111;'> 19.18KB </span>","children":null,"spread":false},{"title":"autobatch.py <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false}],"spread":false},{"title":".idea","children":[{"title":"workspace.xml <span style='color:#111;'> 3.40KB </span>","children":null,"spread":false},{"title":"misc.xml <span style='color:#111;'> 266B </span>","children":null,"spread":false},{"title":"inspectionProfiles","children":[{"title":"Project_Default.xml <span style='color:#111;'> 7.29KB </span>","children":null,"spread":false},{"title":"profiles_settings.xml <span style='color:#111;'> 174B </span>","children":null,"spread":false}],"spread":true},{"title":"modules.xml <span style='color:#111;'> 275B </span>","children":null,"spread":false},{"title":".gitignore <span style='color:#111;'> 50B </span>","children":null,"spread":false},{"title":"zjiaxiao.iml <span style='color:#111;'> 477B </span>","children":null,"spread":false}],"spread":true},{"title":"abnoenal_video_five_type_test","children":[{"title":"gB_9_s5_2019-03-07T16;31;48+01;00_rgb_body_005.mp4 <span style='color:#111;'> 2.65MB </span>","children":null,"spread":false}],"spread":true},{"title":"model","children":[{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false}],"spread":true},{"title":"my_func.py <span style='color:#111;'> 2.97KB </span>","children":null,"spread":false},{"title":"detect.py <span style='color:#111;'> 8.60KB </span>","children":null,"spread":false},{"title":"__pycache__","children":[{"title":"detect.cpython-39.pyc <span style='color:#111;'> 4.54KB </span>","children":null,"spread":false},{"title":"five_type_det_service.cpython-39.pyc <span style='color:#111;'> 5.89KB </span>","children":null,"spread":false},{"title":"my_func.cpython-39.pyc <span style='color:#111;'> 2.40KB </span>","children":null,"spread":false}],"spread":true},{"title":"config","children":[{"title":"rtmdet_m_8xb32-300e_coco.py <span style='color:#111;'> 5.15KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn_2x_coco.py <span style='color:#111;'> 9.74KB </span>","children":null,"spread":false},{"title":"_base_","children":[{"title":"default_runtime.py <span style='color:#111;'> 759B </span>","children":null,"spread":false},{"title":"schedules","children":[{"title":"schedule_2x.py <span style='color:#111;'> 815B </span>","children":null,"spread":false},{"title":"schedule_1x.py <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"schedule_20e.py <span style='color:#111;'> 816B </span>","children":null,"spread":false}],"spread":false},{"title":"datasets","children":[{"title":"dsdl.py <span style='color:#111;'> 1.89KB </span>","children":null,"spread":false},{"title":"isaid_instance.py <span style='color:#111;'> 1.95KB </span>","children":null,"spread":false},{"title":"ade20k_instance.py <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"objects365v1_detection.py <span style='color:#111;'> 2.42KB </span>","children":null,"spread":false},{"title":"cityscapes_instance.py <span style='color:#111;'> 3.64KB </span>","children":null,"spread":false},{"title":"voc0712.py <span style='color:#111;'> 3.35KB </span>","children":null,"spread":false},{"title":"coco_semantic.py <span style='color:#111;'> 2.30KB </span>","children":null,"spread":false},{"title":"mot_challenge.py <span style='color:#111;'> 2.72KB </span>","children":null,"spread":false},{"title":"wider_face.py <span style='color:#111;'> 2.28KB </span>","children":null,"spread":false},{"title":"coco_caption.py <span style='color:#111;'> 2.07KB </span>","children":null,"spread":false},{"title":"coco_wholebody.py <span style='color:#111;'> 30.01KB </span>","children":null,"spread":false},{"title":"youtube_vis.py <span style='color:#111;'> 2.05KB </span>","children":null,"spread":false},{"title":"semi_coco_detection.py <span style='color:#111;'> 5.78KB </span>","children":null,"spread":false},{"title":"deepfashion.py <span style='color:#111;'> 3.12KB </span>","children":null,"spread":false},{"title":"mot_challenge_reid.py <span style='color:#111;'> 1.78KB </span>","children":null,"spread":false},{"title":"refcoco.py <span style='color:#111;'> 1.55KB </span>","children":null,"spread":false},{"title":"coco_panoptic.py <span style='color:#111;'> 3.20KB </span>","children":null,"spread":false},{"title":"ade20k_panoptic.py <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"coco_instance.py <span style='color:#111;'> 3.16KB </span>","children":null,"spread":false},{"title":"coco_instance_semantic.py <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"refcocog.py <span style='color:#111;'> 1.54KB </span>","children":null,"spread":false},{"title":"refcoco+.py <span style='color:#111;'> 1.56KB </span>","children":null,"spread":false},{"title":"lvis_v0.5_instance.py <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"coco_detection.py <span style='color:#111;'> 3.11KB </span>","children":null,"spread":false},{"title":"ade20k_semantic.py <span style='color:#111;'> 1.49KB </span>","children":null,"spread":false},{"title":"lvis_v1_instance.py <span style='color:#111;'> 656B </span>","children":null,"spread":false},{"title":"cityscapes_detection.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"objects365v2_detection.py <span style='color:#111;'> 2.41KB </span>","children":null,"spread":false},{"title":"mot_challenge_det.py <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"openimages_detection.py <span style='color:#111;'> 2.91KB </span>","children":null,"spread":false},{"title":"v3det.py <span style='color:#111;'> 2.16KB </span>","children":null,"spread":false}],"spread":false},{"title":"models","children":[{"title":"fast-rcnn_r50_fpn.py <span style='color:#111;'> 2.20KB </span>","children":null,"spread":false},{"title":"rpn_r50-caffe-c4.py <span style='color:#111;'> 1.93KB </span>","children":null,"spread":false},{"title":"cascade-mask-rcnn_r50_fpn.py <span style='color:#111;'> 7.00KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50_fpn.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"cascade-rcnn_r50_fpn.py <span style='color:#111;'> 6.37KB </span>","children":null,"spread":false},{"title":"ssd300.py <span style='color:#111;'> 1.91KB </span>","children":null,"spread":false},{"title":"retinanet_r50_fpn.py <span style='color:#111;'> 2.01KB </span>","children":null,"spread":false},{"title":"rpn_r50_fpn.py <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-dc5.py <span style='color:#111;'> 3.58KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50_fpn.py <span style='color:#111;'> 3.74KB </span>","children":null,"spread":false},{"title":"faster-rcnn_r50-caffe-c4.py <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"mask-rcnn_r50-caffe-c4.py <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false}],"spread":false}],"spread":true},{"title":"rtmpose-m_8xb64-270e_coco-wholebody-256x192.py <span style='color:#111;'> 6.53KB </span>","children":null,"spread":false}],"spread":true},{"title":"UI","children":[{"title":"icon.ico <span style='color:#111;'> 9.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":false},{"title":"模型训练","children":[{"title":"yolov8n.pt <span style='color:#111;'> 6.25MB </span>","children":null,"spread":false},{"title":"best.pt <span style='color:#111;'> 5.99MB </span>","children":null,"spread":false},{"title":"Detection_video.py <span style='color:#111;'> 3.13KB </span>","children":null,"spread":false},{"title":"yolo11n.pt <span style='color:#111;'> 5.35MB </span>","children":null,"spread":false},{"title":"train_mode.py <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false}],"spread":true},{"title":"README.txt <span style='color:#111;'> 3.54KB </span>","children":null,"spread":false},{"title":"基于YOLOv8的智慧农场牲畜异常行为监测系统73ef8e7801844e4695a08983f00492c3.txt <span style='color:#111;'> 213B </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明