光伏+自动化+神经网络领域-单相光伏并网系统设计-matlab仿真,论文和参考文献

上传者: m0_60893460 | 上传时间: 2024-04-10 15:32:24 | 文件大小: 592.16MB | 文件类型: ZIP
昨天刚离校毕业,毕设做的勉勉强强但总归有所收获,希望把做毕设里一些东西分享给大家。注意:本设计改进后的BP神经网络实际上没有达到要求,但是双非综合性大学的本科毕设也能过关,所以本资源适合用来混一混。因为神经网络在自动化领域的应用模棱两可,没看见真正有人分享出源代码和数据集,整个过程的。也欢迎大佬看过本设计后批评指正!!我真也想知道怎么实现神经网络应用于控制系统!多谢大家,另外有需要别的资源请私信,但看此软件少。

文件下载

资源详情

[{"title":"( 44 个子文件 592.16MB ) 光伏+自动化+神经网络领域-单相光伏并网系统设计-matlab仿真,论文和参考文献","children":[{"title":"参考书籍","children":[{"title":"高等应用数学问题的MATLAB求解_薛定宇,陈阳泉著_13441866_zhelper-search.pdf <span style='color:#111;'> 460.93MB </span>","children":null,"spread":false},{"title":"深入浅出神经网络与深度学习 (迈克尔·尼尔森(Michael Nielsen)) (Z-Library).pdf <span style='color:#111;'> 16.64MB </span>","children":null,"spread":false},{"title":"太阳能光伏并网发电及其逆变控制(第2版_张兴 曹仁贤_15506179_zhelper-search.pdf <span style='color:#111;'> 72.63MB </span>","children":null,"spread":false}],"spread":true},{"title":"matlab文件","children":[{"title":"single_Gird2016a.slx <span style='color:#111;'> 39.25KB </span>","children":null,"spread":false},{"title":"dierbpfv.slx <span style='color:#111;'> 50.57KB </span>","children":null,"spread":false},{"title":"PV特性曲线","children":[{"title":"p_main.m <span style='color:#111;'> 874B </span>","children":null,"spread":false},{"title":"p.slx <span style='color:#111;'> 24.94KB </span>","children":null,"spread":false}],"spread":true},{"title":"三相MPPT_NN.slx <span style='color:#111;'> 45.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"参考文献","children":[{"title":"基于APID-RBF神经网络的光伏MPPT方法_赵子睿.caj <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"Artificial neural network maximum power pointtracker for solar electric vehicle.pdf <span style='color:#111;'> 1.90MB </span>","children":null,"spread":false},{"title":"其他相关方向文献","children":[{"title":"基于MPPT的新型变步长增量电导法的研究_高嵩.caj <span style='color:#111;'> 1013.52KB </span>","children":null,"spread":false},{"title":"光伏发电的最大功率跟踪算法研究_陈兴峰.caj <span style='color:#111;'> 966.93KB </span>","children":null,"spread":false},{"title":"光伏并网逆变器的建模与控制器设计_庞晋永.caj <span style='color:#111;'> 12.91MB </span>","children":null,"spread":false},{"title":"单相光伏逆变器自适应谐波消除电流控制策略_鲁改凤 (1).pdf <span style='color:#111;'> 1.95MB </span>","children":null,"spread":false},{"title":"光伏发电逆变并网系统复合控制策略.pdf <span style='color:#111;'> 2.69MB </span>","children":null,"spread":false},{"title":"多模块并联的并网光伏逆变系统的设计与优化研究_张伟健.caj <span style='color:#111;'> 5.22MB </span>","children":null,"spread":false},{"title":"加入预测信息的反馈误差学习模型及其仿真研究_阮晓钢.pdf <span style='color:#111;'> 288.44KB </span>","children":null,"spread":false},{"title":"基于优化BP神经网络光伏功率预测的研究_孟珊珊.caj <span style='color:#111;'> 3.10MB </span>","children":null,"spread":false},{"title":"基于APID-RBF神经网络的光伏MPPT方法_赵子睿.caj <span style='color:#111;'> 1.38MB </span>","children":null,"spread":false},{"title":"一种实验型单相光伏并网逆变器的设计与实现.pdf <span style='color:#111;'> 1.94MB </span>","children":null,"spread":false},{"title":"基于循环神经网络的微电网并网等效建模_蔡昌春.pdf <span style='color:#111;'> 11.72MB </span>","children":null,"spread":false},{"title":"单相光伏逆变器的研究与实现_王凡.caj <span style='color:#111;'> 2.55MB </span>","children":null,"spread":false},{"title":"光伏发电系统发电功率预测研究_王清龙.caj <span style='color:#111;'> 4.29MB </span>","children":null,"spread":false},{"title":"单相光伏逆变器电压穿越控制策略_欧阳静.caj <span style='color:#111;'> 1.55MB </span>","children":null,"spread":false},{"title":"神经网络逆控制在单相光伏逆变系统中的应用研究_马云龙.caj <span style='color:#111;'> 2.86MB </span>","children":null,"spread":false},{"title":"Boost电路在光伏发电系统中的应用_高任龙.caj <span style='color:#111;'> 618.93KB </span>","children":null,"spread":false},{"title":"基于改进BP神经网络结合P...光伏并网逆变器控制策略研究_屈浩轩.caj <span style='color:#111;'> 8.20MB </span>","children":null,"spread":false},{"title":"非线性不确定系统的自适应神经网络控制_朱丽雅.pdf <span style='color:#111;'> 4.70MB </span>","children":null,"spread":false},{"title":"光伏并网发电系统MPPT和孤岛检测技术的研究和实现.kdh <span style='color:#111;'> 1.54MB </span>","children":null,"spread":false},{"title":"基于神经网络的pid自整定光伏并网逆变器仿真.pdf <span style='color:#111;'> 774.33KB </span>","children":null,"spread":false},{"title":"PWM逆变器PI双环模拟控制技术研究_何俊.caj <span style='color:#111;'> 1.88MB </span>","children":null,"spread":false},{"title":"基于RBF神经网络的光伏系统MPPT研究_王志豪.caj <span style='color:#111;'> 725.73KB </span>","children":null,"spread":false},{"title":"基于PI与神经网络准PR双闭环控制的光伏并网控制研究_万立宇.caj <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false},{"title":"基于单神经元自适应PI的PWM整流器控制_李梅.caj <span style='color:#111;'> 964.75KB </span>","children":null,"spread":false},{"title":"神经网络与锁相环相结合的谐波检测方法_马立新.caj <span style='color:#111;'> 680.98KB </span>","children":null,"spread":false},{"title":"基于改进神经网络的一种新型MPPT预测方法_赵华芳.caj <span style='color:#111;'> 1.73MB </span>","children":null,"spread":false},{"title":"基于BP神经网络的光伏发电设备故障检测方法研究_王宁.caj <span style='color:#111;'> 903.98KB </span>","children":null,"spread":false},{"title":"基于神经网络的PID自整定光伏并网逆变器仿真.pdf <span style='color:#111;'> 1.67MB </span>","children":null,"spread":false},{"title":"单相两级式非隔离光伏并网逆变器的研究_洪德宇.caj <span style='color:#111;'> 2.76MB </span>","children":null,"spread":false},{"title":"基于单神经元自适应的PWM整流器控制方法研究_胡春龙.caj <span style='color:#111;'> 351.77KB </span>","children":null,"spread":false}],"spread":false},{"title":"Neural-Network-Based MPPT Control of a Stand-Alone Hybrid Power Generation System.pdf <span style='color:#111;'> 1.32MB </span>","children":null,"spread":false},{"title":"自适应BP神经网络在光伏MPPT中的应用_胥芳.caj <span style='color:#111;'> 439.77KB </span>","children":null,"spread":false},{"title":"Evaluation of neural network based real time maximum power trackingcontroller for PV system.pdf <span style='color:#111;'> 515.67KB </span>","children":null,"spread":false}],"spread":true},{"title":"单相光伏逆变系统的神经网络逆控制器设计.pdf <span style='color:#111;'> 1.82MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明