实验3客户RFM实验案例代码

上传者: m0_60732994 | 上传时间: 2025-04-01 11:15:09 | 文件大小: 8.17MB | 文件类型: ZIP
​ 一、实验目的 1掌握RFM分析方法和k-means聚类的方法,能够进行价值识别 2掌握Python 聚类的方法 3.EM聚类(基于高斯混合模型的EM聚类) 二、知识准备 RFM模型是衡量客户价值和客户创利能力的重要工具和手段。在客户分类中,RFM模型是一个经典的分类模型,利用通用交易环节中最核心的三个维度——最近消费(Recency)、消费频率(Frequency)、消费金额(Monetary)细分客户群体,从而分析不同群体的客户价值。 三、实验准备 1.使用算法:RFM模型、聚类算法 2. 数据来源 RFM数据集为英国在线零售商在2010年12月1日至2011年12月9日间发生的所有网络交易订单信息。该公司主要销售礼品为主,并且多数客户为批发商。 数据集介绍及来源: https://www.kaggle.com/carrie1/ecommerce-data https://archive.ics.uci.edu/ml/datasets/online+retail# 特征说明: InvoiceNo:订单编号,由六位数字组成,退货订单编号开头有字母C StockCode

文件下载

资源详情

[{"title":"( 4 个子文件 8.17MB ) 实验3客户RFM实验案例代码","children":[{"title":"heatmap.jpg <span style='color:#111;'> 27.13KB </span>","children":null,"spread":false},{"title":"data.csv <span style='color:#111;'> 43.47MB </span>","children":null,"spread":false},{"title":"RFM_demo2.ipynb <span style='color:#111;'> 885.25KB </span>","children":null,"spread":false},{"title":"data_rfm_score1.xlsx <span style='color:#111;'> 387.92KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明