EMD-GWO-SVR对时间序列进行经验模态分解后用灰狼算法优化支持向量回归预测

上传者: lxllxmlxllxm | 上传时间: 2024-08-08 14:48:56 | 文件大小: 1.11MB | 文件类型: ZIP
《基于EMD-GWO-SVR的时间序列预测方法详解》 时间序列预测是数据分析中的一个重要领域,广泛应用于经济、金融、气象、工程等多个行业。本文将深入探讨一种利用经验模态分解(Empirical Mode Decomposition,简称EMD)、灰狼算法(Grey Wolf Optimizer,简称GWO)以及支持向量回归(Support Vector Regression,简称SVR)相结合的方法来对时间序列进行预测。这种方法充分利用了各自算法的优势,提高了预测的准确性和稳定性。 一、经验模态分解(EMD) EMD是一种数据驱动的信号处理技术,它能够将非线性、非平稳的时间序列分解为一系列简单、局部可描述的内在模态函数(Intrinsic Mode Function,简称IMF)。EMD通过对原始信号进行迭代处理,自适应地分离出不同频率成分,将复杂信号转化为多个具有物理意义的分量:高频分量、低频分量和残差。这种方法无需事先假设信号模型,对于复杂数据的处理具有显著优势。 二、灰狼算法(GWO) 灰狼算法是一种基于动物社会行为的全局优化算法,模拟了灰狼群体在捕猎过程中的合作和竞争行为。在预测问题中,GWO可以寻找最优参数,以最大化或最小化目标函数。在这个过程中,灰狼群体中的阿尔法狼、贝塔狼和德尔塔狼分别代表最优解、次优解和第三优解,通过调整这些狼的位置来不断优化参数,最终达到全局最优。 三、支持向量回归(SVR) 支持向量机(SVM)在分类任务中表现出色,而其拓展形式支持向量回归则用于回归问题。SVR通过构建一个最大边距超平面,使得数据点尽可能接近这个超平面但不超过预设的误差边界。在预测时,SVR寻找能够最小化预测误差且同时满足边界条件的最优决策面。在本方法中,GWO用于优化SVR的参数,如核函数类型、惩罚参数C和核函数参数γ,以提高预测精度。 四、方法整合与应用 在“EMD-GWO-SVR”方法中,首先对时间序列进行EMD分解,得到不同频率的分量;然后使用GWO优化SVR的参数,构建预测模型;将EMD分解后的各分量作为输入,通过训练好的SVR模型进行预测。这种方法结合了EMD的自适应分解能力、GWO的全局优化能力和SVR的高效预测能力,尤其适用于处理非线性、非平稳的时间序列预测问题。 在MATLAB环境下,我们可以使用提供的代码文件“GWO_SVR.m”和“EMD_GWO_SVR.m”来实现这一预测流程。此外,“gp.xls”可能包含的是待预测的数据样本,而“package_emd”和“libsvm-免编译”则是用于EMD分解和SVR建模的相关库文件,简化了算法的实现步骤。 总结,EMD-GWO-SVR方法是将多学科理论融合应用的典范,为复杂时间序列的预测提供了新的思路。其有效性和实用性已在多个领域的实际问题中得到了验证,未来有望在更广泛的场景下发挥重要作用。

文件下载

资源详情

[{"title":"( 205 个子文件 1.11MB ) EMD-GWO-SVR对时间序列进行经验模态分解后用灰狼算法优化支持向量回归预测","children":[{"title":"cextr.c <span style='color:#111;'> 14.37KB </span>","children":null,"spread":false},{"title":"svmtrain.c <span style='color:#111;'> 11.10KB </span>","children":null,"spread":false},{"title":"extr.c <span style='color:#111;'> 10.23KB </span>","children":null,"spread":false},{"title":"svmpredict.c <span style='color:#111;'> 9.05KB </span>","children":null,"spread":false},{"title":"svm-train.c <span style='color:#111;'> 8.68KB </span>","children":null,"spread":false},{"title":"svm_model_matlab.c <span style='color:#111;'> 7.54KB </span>","children":null,"spread":false},{"title":"cio.c <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"svm-scale.c <span style='color:#111;'> 6.88KB </span>","children":null,"spread":false},{"title":"io.c <span style='color:#111;'> 6.86KB </span>","children":null,"spread":false},{"title":"cio_fix.c <span style='color:#111;'> 6.77KB </span>","children":null,"spread":false},{"title":"interface.c <span style='color:#111;'> 6.31KB </span>","children":null,"spread":false},{"title":"io_fix.c <span style='color:#111;'> 6.04KB </span>","children":null,"spread":false},{"title":"svm-predict.c <span style='color:#111;'> 5.25KB </span>","children":null,"spread":false},{"title":"clocal_mean.c <span style='color:#111;'> 4.97KB </span>","children":null,"spread":false},{"title":"cemdc2.c <span style='color:#111;'> 4.89KB </span>","children":null,"spread":false},{"title":"cemdc.c <span style='color:#111;'> 4.87KB </span>","children":null,"spread":false},{"title":"clocal_mean2.c <span style='color:#111;'> 4.79KB </span>","children":null,"spread":false},{"title":"emdc.c <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"cemdc_fix.c <span style='color:#111;'> 4.13KB </span>","children":null,"spread":false},{"title":"cemdc2_fix.c <span style='color:#111;'> 4.11KB </span>","children":null,"spread":false},{"title":"libsvmread.c <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"emdc_fix.c <span style='color:#111;'> 3.43KB </span>","children":null,"spread":false},{"title":"local_mean.c <span style='color:#111;'> 2.77KB </span>","children":null,"spread":false},{"title":"libsvmwrite.c <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"interpolation.c <span style='color:#111;'> 2.06KB </span>","children":null,"spread":false},{"title":"emd_complex.c <span style='color:#111;'> 508B </span>","children":null,"spread":false},{"title":"main.c <span style='color:#111;'> 398B </span>","children":null,"spread":false},{"title":"COPYRIGHT <span style='color:#111;'> 1.46KB </span>","children":null,"spread":false},{"title":"svm.cpp <span style='color:#111;'> 61.93KB </span>","children":null,"spread":false},{"title":"svm-toy.cpp <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false},{"title":"callbacks.cpp <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false},{"title":"svm-toy.cpp <span style='color:#111;'> 9.52KB </span>","children":null,"spread":false},{"title":"svm.def <span style='color:#111;'> 434B </span>","children":null,"spread":false},{"title":"libsvm.dll <span style='color:#111;'> 156.00KB </span>","children":null,"spread":false},{"title":"svm-train.exe <span style='color:#111;'> 152.00KB </span>","children":null,"spread":false},{"title":"svm-toy.exe <span style='color:#111;'> 138.00KB </span>","children":null,"spread":false},{"title":"svm-predict.exe <span style='color:#111;'> 122.50KB </span>","children":null,"spread":false},{"title":"svm-scale.exe <span style='color:#111;'> 78.50KB </span>","children":null,"spread":false},{"title":"svm-toy.glade <span style='color:#111;'> 6.25KB </span>","children":null,"spread":false},{"title":"svm.h <span style='color:#111;'> 3.06KB </span>","children":null,"spread":false},{"title":"callbacks.h <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"cio.h <span style='color:#111;'> 1.16KB </span>","children":null,"spread":false},{"title":"io.h <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"cio_fix.h <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"io_fix.h <span style='color:#111;'> 1.07KB </span>","children":null,"spread":false},{"title":"clocal_mean.h <span style='color:#111;'> 790B </span>","children":null,"spread":false},{"title":"cextr.h <span style='color:#111;'> 770B </span>","children":null,"spread":false},{"title":"clocal_mean2.h <span style='color:#111;'> 752B </span>","children":null,"spread":false},{"title":"local_mean.h <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"extr.h <span style='color:#111;'> 674B </span>","children":null,"spread":false},{"title":"emd_complex.h <span style='color:#111;'> 512B </span>","children":null,"spread":false},{"title":"interpolation.h <span style='color:#111;'> 468B </span>","children":null,"spread":false},{"title":"interface.h <span style='color:#111;'> 203B </span>","children":null,"spread":false},{"title":"svm_model_matlab.h <span style='color:#111;'> 201B </span>","children":null,"spread":false},{"title":"heart_scale <span style='color:#111;'> 27.02KB </span>","children":null,"spread":false},{"title":"FAQ.html <span style='color:#111;'> 70.49KB </span>","children":null,"spread":false},{"title":"test_applet.html <span style='color:#111;'> 81B </span>","children":null,"spread":false},{"title":"libsvm.jar <span style='color:#111;'> 49.15KB </span>","children":null,"spread":false},{"title":"svm.java <span style='color:#111;'> 60.94KB </span>","children":null,"spread":false},{"title":"svm_toy.java <span style='color:#111;'> 11.98KB </span>","children":null,"spread":false},{"title":"svm_scale.java <span style='color:#111;'> 8.73KB </span>","children":null,"spread":false},{"title":"svm_train.java <span style='color:#111;'> 8.07KB </span>","children":null,"spread":false},{"title":"svm_predict.java <span style='color:#111;'> 4.17KB </span>","children":null,"spread":false},{"title":"svm_parameter.java <span style='color:#111;'> 1.26KB </span>","children":null,"spread":false},{"title":"svm_model.java <span style='color:#111;'> 734B </span>","children":null,"spread":false},{"title":"svm_problem.java <span style='color:#111;'> 136B </span>","children":null,"spread":false},{"title":"svm_node.java <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"svm_print_interface.java <span style='color:#111;'> 87B </span>","children":null,"spread":false},{"title":"ls-R <span style='color:#111;'> 1004B </span>","children":null,"spread":false},{"title":"emd_online.m <span style='color:#111;'> 25.70KB </span>","children":null,"spread":false},{"title":"emd.m <span style='color:#111;'> 21.53KB </span>","children":null,"spread":false},{"title":"emd_local.m <span style='color:#111;'> 9.67KB </span>","children":null,"spread":false},{"title":"GWO_SVR.m <span style='color:#111;'> 7.59KB </span>","children":null,"spread":false},{"title":"EMD_GWO_SVR.m <span style='color:#111;'> 7.37KB </span>","children":null,"spread":false},{"title":"migrate.m <span style='color:#111;'> 7.04KB </span>","children":null,"spread":false},{"title":"SVR.m <span style='color:#111;'> 5.80KB </span>","children":null,"spread":false},{"title":"psoSVMcgForClass.m <span style='color:#111;'> 5.58KB </span>","children":null,"spread":false},{"title":"reins.m <span style='color:#111;'> 5.44KB </span>","children":null,"spread":false},{"title":"mapminmax_new.m <span style='color:#111;'> 5.42KB </span>","children":null,"spread":false},{"title":"psoSVMcgForRegress.m <span style='color:#111;'> 5.27KB </span>","children":null,"spread":false},{"title":"plotroc.m <span style='color:#111;'> 5.24KB </span>","children":null,"spread":false},{"title":"mutbga.m <span style='color:#111;'> 4.83KB </span>","children":null,"spread":false},{"title":"recmut.m <span style='color:#111;'> 4.74KB </span>","children":null,"spread":false},{"title":"ranking.m <span style='color:#111;'> 4.60KB </span>","children":null,"spread":false},{"title":"index_emd.m <span style='color:#111;'> 4.38KB </span>","children":null,"spread":false},{"title":"SVC.m <span style='color:#111;'> 4.12KB </span>","children":null,"spread":false},{"title":"roc.m <span style='color:#111;'> 4.04KB </span>","children":null,"spread":false},{"title":"mpga.m <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"VF.m <span style='color:#111;'> 3.87KB </span>","children":null,"spread":false},{"title":"bivariate_EMD_principle.m <span style='color:#111;'> 3.84KB </span>","children":null,"spread":false},{"title":"gaSVMcgpForRegress.m <span style='color:#111;'> 3.70KB </span>","children":null,"spread":false},{"title":"gaSVMcgForClass.m <span style='color:#111;'> 3.69KB </span>","children":null,"spread":false},{"title":"TutorialTest.m <span style='color:#111;'> 3.51KB </span>","children":null,"spread":false},{"title":"boundary_conditions_emd.m <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"mutate.m <span style='color:#111;'> 3.36KB </span>","children":null,"spread":false},{"title":"plotc.m <span style='color:#111;'> 3.17KB </span>","children":null,"spread":false},{"title":"bs2rv.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"emd_visu.m <span style='color:#111;'> 3.14KB </span>","children":null,"spread":false},{"title":"instfreq.m <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false},{"title":"toimage.m <span style='color:#111;'> 2.93KB </span>","children":null,"spread":false},{"title":"......","children":null,"spread":false},{"title":"<span style='color:steelblue;'>文件过多,未全部展示</span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明