图像缩放算法

上传者: ljx525685668 | 上传时间: 2021-03-26 02:11:44 | 文件大小: 16.29MB | 文件类型: ZIP
图像缩放的三种算法:邻近像素插值算法,二线性插值算法,立方卷积算法

文件下载

资源详情

[{"title":"( 57 个子文件 16.29MB ) 图像缩放算法","children":[{"title":"ImgScale","children":[{"title":"ImgScale.plg <span style='color:#111;'> 2.25KB </span>","children":null,"spread":false},{"title":"ImgScale.h <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"ImgScale.opt <span style='color:#111;'> 47.50KB </span>","children":null,"spread":false},{"title":"ImgScaleView.h <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"ImageGeometry.h <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false},{"title":"Dib.h <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"StdAfx.cpp <span style='color:#111;'> 210B </span>","children":null,"spread":false},{"title":"resource.h <span style='color:#111;'> 1009B </span>","children":null,"spread":false},{"title":"ImageScaleDialog.cpp <span style='color:#111;'> 1.40KB </span>","children":null,"spread":false},{"title":"ImgScaleView.cpp <span style='color:#111;'> 5.82KB </span>","children":null,"spread":false},{"title":"MainFrm.h <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"ImageProcess.cpp <span style='color:#111;'> 3.21KB </span>","children":null,"spread":false},{"title":"ImageScaleDialog.h <span style='color:#111;'> 1.33KB </span>","children":null,"spread":false},{"title":"ImgScale.suo <span style='color:#111;'> 29.50KB </span>","children":null,"spread":false},{"title":"ImageProcess.h <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"Debug","children":[{"title":"ImgScale.exe.embed.manifest.res <span style='color:#111;'> 984B </span>","children":null,"spread":false},{"title":"ImgScale.res <span style='color:#111;'> 5.86KB </span>","children":null,"spread":false},{"title":"ImgScale.obj <span style='color:#111;'> 35.12KB </span>","children":null,"spread":false},{"title":"ImageScaleDialog.obj <span style='color:#111;'> 19.59KB </span>","children":null,"spread":false},{"title":"vc90.idb <span style='color:#111;'> 931.00KB </span>","children":null,"spread":false},{"title":"ImgScale.pdb <span style='color:#111;'> 3.40MB </span>","children":null,"spread":false},{"title":"ImageGeometry.obj <span style='color:#111;'> 44.91KB </span>","children":null,"spread":false},{"title":"BuildLog.htm <span style='color:#111;'> 18.10KB </span>","children":null,"spread":false},{"title":"ImgScale.exe <span style='color:#111;'> 105.50KB </span>","children":null,"spread":false},{"title":"ImgScale.pch <span style='color:#111;'> 24.13MB </span>","children":null,"spread":false},{"title":"ImageProcess.obj <span style='color:#111;'> 18.97KB </span>","children":null,"spread":false},{"title":"Dib.obj <span style='color:#111;'> 43.38KB </span>","children":null,"spread":false},{"title":"mt.dep <span style='color:#111;'> 69B </span>","children":null,"spread":false},{"title":"ImgScale.exe.intermediate.manifest <span style='color:#111;'> 861B </span>","children":null,"spread":false},{"title":"ImgScale.exe.embed.manifest <span style='color:#111;'> 920B </span>","children":null,"spread":false},{"title":"ImgScale.ilk <span style='color:#111;'> 1.25MB </span>","children":null,"spread":false},{"title":"MainFrm.obj <span style='color:#111;'> 27.31KB </span>","children":null,"spread":false},{"title":"vc90.pdb <span style='color:#111;'> 1.92MB </span>","children":null,"spread":false},{"title":"StdAfx.obj <span style='color:#111;'> 454.78KB </span>","children":null,"spread":false},{"title":"ImgScaleDoc.obj <span style='color:#111;'> 27.88KB </span>","children":null,"spread":false},{"title":"ImgScaleView.obj <span style='color:#111;'> 43.18KB </span>","children":null,"spread":false}],"spread":false},{"title":"ReadMe.txt <span style='color:#111;'> 3.95KB </span>","children":null,"spread":false},{"title":"ImgScale.clw <span style='color:#111;'> 2.18KB </span>","children":null,"spread":false},{"title":"StdAfx.h <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"ImgScaleDoc.cpp <span style='color:#111;'> 2.31KB </span>","children":null,"spread":false},{"title":"MainFrm.cpp <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false},{"title":"ImgScale.cpp <span style='color:#111;'> 4.05KB </span>","children":null,"spread":false},{"title":"ImgScale.vcproj <span style='color:#111;'> 10.07KB </span>","children":null,"spread":false},{"title":"ImgScaleDoc.h <span style='color:#111;'> 1.42KB </span>","children":null,"spread":false},{"title":"Release","children":null,"spread":false},{"title":"ImageGeometry.cpp <span style='color:#111;'> 19.67KB </span>","children":null,"spread":false},{"title":"ImgScale.sln <span style='color:#111;'> 881B </span>","children":null,"spread":false},{"title":"ImgScale.aps <span style='color:#111;'> 27.33KB </span>","children":null,"spread":false},{"title":"ImgScale.dsp <span style='color:#111;'> 5.00KB </span>","children":null,"spread":false},{"title":"res","children":[{"title":"ImgScale.rc2 <span style='color:#111;'> 400B </span>","children":null,"spread":false},{"title":"ImgScaleDoc.ico <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false},{"title":"ImgScale.ico <span style='color:#111;'> 1.05KB </span>","children":null,"spread":false}],"spread":false},{"title":"ImgScale.rc <span style='color:#111;'> 9.84KB </span>","children":null,"spread":false},{"title":"ImgScale.vcproj.LENOVO-071544AE.Owner.user <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"Img.h <span style='color:#111;'> 8.73KB </span>","children":null,"spread":false},{"title":"Dib.cpp <span style='color:#111;'> 15.47KB </span>","children":null,"spread":false},{"title":"ImgScale.dsw <span style='color:#111;'> 539B </span>","children":null,"spread":false},{"title":"ImgScale.ncb <span style='color:#111;'> 22.21MB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

  • wlb321 :
    不错,值得学习。图像处理的入门必学!
    2020-09-15
  • 小时候特聪明 :
    三种经典的基于插值的缩放方法,挺好,较适合入门学习~~
    2014-05-21
  • VonChenPlus :
    写的非常好,支持
    2014-03-05
  • wuyongbo4088 :
    图像处理的基础,很值得借鉴。
    2013-12-16
  • david800117 :
    謝謝!!!值得我學習~~^^很需要Bicubic algo~~
    2013-10-16
  • wlem1981 :
    不错,值得学习。图像处理的入门必学!
    2013-10-14

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明