CMU11-777 multimodal machine learning Fall 2019讲义

上传者: ldzhangyx | 上传时间: 2021-07-13 15:10:01 | 文件大小: 89.93MB | 文件类型: ZIP
上传者不拥有讲义的原始版权。所有版权归属CMU。
该文件集是CMU开设的11-777课程,名为multimodal machine learning,每年fall学期开设。
本讲义是2019 Fall的版本。
课程介绍:
Description
Multimodal machine learning (MMML) is a vibrant multi-disciplinary research field which addresses some of the original goals of artificial intelligence by integrating and modeling multiple communicative modalities, including linguistic, acoustic and visual messages. With the initial research on audio-visual speech recognition and more recently with language vision projects such as image and video captioning, this research field brings some unique challenges for multimodal researchers given the heterogeneity of the data and the contingency often found between modalities. The course will present the fundamental mathematical concepts in machine learning and deep learning relevant to the five main challenges in multimodal machine learning: (1) multimodal representation learning, (2) translation mapping, (3) modality alignment, (4) multimodal fusion and (5) co-learning. These include, but not limited to, multimodal auto-encoder, deep canonical correlation analysis, multi-kernel learning, attention models and multimodal recurrent neural networks. We will also review recent papers describing state-of-the-art probabilistic models and computational algorithms for MMML and discuss the current and upcoming challenges. The course will discuss many of the recent applications of MMML including multimodal affect recognition, image and video captioning and cross-modal multimedia retrieval. This is a graduate course designed primarily for PhD and research master students at LTI, MLD, CSD, HCII and RI; others, for example (undergraduate) students of CS or from professional master programs, are advised to seek prior permission of the instructor. It is required for students to have taken an introduction machine learning course such as 10-401, 10-601, 10-701, 11-663, 11-441, 11-641 or 11-741. Prior knowledge of deep learning is recommended.

文件下载

资源详情

[{"title":"( 21 个子文件 89.93MB ) CMU11-777 multimodal machine learning Fall 2019讲义","children":[{"title":"lecture10.1MultimodalFusion.pdf <span style='color:#111;'> 5.69MB </span>","children":null,"spread":false},{"title":"lecture2.2BasicConceptsOptimization.pdf <span style='color:#111;'> 2.35MB </span>","children":null,"spread":false},{"title":"lecture10.2NewDirections.pdf <span style='color:#111;'> 7.78MB </span>","children":null,"spread":false},{"title":"lecture7.1AlignmentAndRepresentation.pdf <span style='color:#111;'> 2.95MB </span>","children":null,"spread":false},{"title":"lecture2.1BasicConcepts.pdf <span style='color:#111;'> 2.25MB </span>","children":null,"spread":false},{"title":"lecture5.2StructuredRepresentations.pdf <span style='color:#111;'> 2.69MB </span>","children":null,"spread":false},{"title":"lecture1.1Introduction.pdf <span style='color:#111;'> 3.76MB </span>","children":null,"spread":false},{"title":"lecture4.1MultimodalRepresentations.pdf <span style='color:#111;'> 3.84MB </span>","children":null,"spread":false},{"title":"Lecture9.2VisualQuestionAnswering.pdf <span style='color:#111;'> 5.14MB </span>","children":null,"spread":false},{"title":"Lecture13.1Interpretable_Linear_ModelingGirard.pdf <span style='color:#111;'> 1.31MB </span>","children":null,"spread":false},{"title":"RL_Lecture_1.pdf <span style='color:#111;'> 4.04MB </span>","children":null,"spread":false},{"title":"Lecture12.2GenerativeModelsNeubig.pdf <span style='color:#111;'> 9.96MB </span>","children":null,"spread":false},{"title":"Lecture7.2GenerativeModels.pdf <span style='color:#111;'> 3.21MB </span>","children":null,"spread":false},{"title":"lecture9.1RandomFieldsAndMore.pdf <span style='color:#111;'> 2.43MB </span>","children":null,"spread":false},{"title":"RL_Lecture_2.pdf <span style='color:#111;'> 7.93MB </span>","children":null,"spread":false},{"title":"Lecture12.1EmbodiedLanguageGrounding.pdf <span style='color:#111;'> 19.19MB </span>","children":null,"spread":false},{"title":"lecture3.1ConvolutionNetwork.pdf <span style='color:#111;'> 3.65MB </span>","children":null,"spread":false},{"title":"lecture1.2datasets.pdf <span style='color:#111;'> 6.54MB </span>","children":null,"spread":false},{"title":"lecture4.2CoordinatedRepresentations.pdf <span style='color:#111;'> 3.25MB </span>","children":null,"spread":false},{"title":"lecture3.2RecurrentNetworks.pdf <span style='color:#111;'> 2.78MB </span>","children":null,"spread":false},{"title":"lecture5.1MultimodalAlignment.pdf <span style='color:#111;'> 2.84MB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明