特征提取原始文献(CV)

上传者: lclin_ustc | 上传时间: 2021-06-09 20:04:29 | 文件大小: 10.34MB | 文件类型: RAR
计算器视觉常用特征(LBP,HOG,SIFT,SURF,Haar)的原始文献,想学习的欢迎下载!

文件下载

资源详情

[{"title":"( 11 个子文件 10.34MB ) 特征提取原始文献(CV)","children":[{"title":"特征提取原始文献(计算机视觉)","children":[{"title":"LBP:A comparative study of texture measures with classification based on feature distributions.pdf <span style='color:#111;'> 582.14KB </span>","children":null,"spread":false},{"title":"SIFT:Distinctive Image Features from Scale-Invariant Keypoints.pdf <span style='color:#111;'> 789.20KB </span>","children":null,"spread":false},{"title":"SIFT:Local Feature View Clustering for 3D Object Recognition.pdf <span style='color:#111;'> 995.93KB </span>","children":null,"spread":false},{"title":"LBP:Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns.pdf <span style='color:#111;'> 3.09MB </span>","children":null,"spread":false},{"title":"A Comparison of SIFT and SURF.pdf <span style='color:#111;'> 1.40MB </span>","children":null,"spread":false},{"title":"SIFT:Object Recognition from Local Scale-Invariant Features.pdf <span style='color:#111;'> 227.34KB </span>","children":null,"spread":false},{"title":"SURF:Speeded-Up Robust Features.pdf <span style='color:#111;'> 1.66MB </span>","children":null,"spread":false},{"title":"Haar:Rapid Object Detectionusing a Boosted Cascade of Simple Features.pdf <span style='color:#111;'> 961.52KB </span>","children":null,"spread":false},{"title":"HOG:Histograms of Oriented Gradients for Human Detection.pdf <span style='color:#111;'> 241.38KB </span>","children":null,"spread":false},{"title":"SURF:Speeded Up Robust Features.pdf <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"Haar:Robust Real-Time Face Detection.pdf <span style='color:#111;'> 316.62KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明