[{"title":"( 72 个子文件 unknown ) 数学分析鼻祖-欧拉( Euler)原著合集","children":[{"title":"欧拉( Euler)部分原着","children":[{"title":"数学分析鼻祖-欧拉( Euler)原著","children":[{"title":"Euler L._An observation on the sums of divisors(1752).pdf <span style='color:#111;'> 96.28KB </span>","children":null,"spread":false},{"title":"Euler L._Theorems on residues obtained by the division of powers(1755).pdf <span style='color:#111;'> 160.60KB </span>","children":null,"spread":false},{"title":"Euler L._On the formation of continued fractions(1775).pdf <span style='color:#111;'> 139.56KB </span>","children":null,"spread":false},{"title":"Introduction to Analysis of the Infinite_Book.II_Euler.djvu <span style='color:#111;'> 2.99MB </span>","children":null,"spread":false},{"title":"Euler L._Theorems about the divisors of numbers contained in the form paa _ qbb(1748).pdf <span style='color:#111;'> 122.38KB </span>","children":null,"spread":false},{"title":"Euler L._A theorem of arithmetic and its proof(1849).pdf <span style='color:#111;'> 71.23KB </span>","children":null,"spread":false},{"title":"Euler L._On the remarkable properties of the pentagonal numbers(1775).pdf <span style='color:#111;'> 111.59KB </span>","children":null,"spread":false},{"title":"Euler L._An easier solution of a Diophantine problem about triangles, in which those lines from the vertices which bisect the opposite sides may be expressed rationally(1779).pdf <span style='color:#111;'> 63.61KB </span>","children":null,"spread":false},{"title":"Euler L._Concerning life annuities(1767).pdf <span style='color:#111;'> 80.13KB </span>","children":null,"spread":false},{"title":"Euler L._On the sums of series of reciprocals(1735).pdf <span style='color:#111;'> 98.90KB </span>","children":null,"spread":false},{"title":"Euler L._An illustration of a paradox about the idoneal, or suitable, numbers(1778).pdf <span style='color:#111;'> 47.73KB </span>","children":null,"spread":false},{"title":"积分学原理","children":[{"title":"part1ch8.pdf <span style='color:#111;'> 234.03KB </span>","children":null,"spread":false},{"title":"part2ch7.pdf <span style='color:#111;'> 121.40KB </span>","children":null,"spread":false},{"title":"part6ch3.pdf <span style='color:#111;'> 112.27KB </span>","children":null,"spread":false},{"title":"part2ch2.pdf <span style='color:#111;'> 325.47KB </span>","children":null,"spread":false},{"title":"part6ch6.pdf <span style='color:#111;'> 245.32KB </span>","children":null,"spread":false},{"title":"part1ch1.pdf <span style='color:#111;'> 439.85KB </span>","children":null,"spread":false},{"title":"part4ch5.pdf <span style='color:#111;'> 280.52KB </span>","children":null,"spread":false},{"title":"part7ch2.pdf <span style='color:#111;'> 243.07KB </span>","children":null,"spread":false},{"title":"part1ch7.pdf <span style='color:#111;'> 251.59KB </span>","children":null,"spread":false},{"title":"part1ch3.pdf <span style='color:#111;'> 337.58KB </span>","children":null,"spread":false},{"title":"part2ch4.pdf <span style='color:#111;'> 224.14KB </span>","children":null,"spread":false},{"title":"part4ch12.pdf <span style='color:#111;'> 127.97KB </span>","children":null,"spread":false},{"title":"part4ch6.pdf <span style='color:#111;'> 240.05KB </span>","children":null,"spread":false},{"title":"part1ch6.pdf <span style='color:#111;'> 244.03KB </span>","children":null,"spread":false},{"title":"part4ch3.pdf <span style='color:#111;'> 248.43KB </span>","children":null,"spread":false},{"title":"part5ch1.pdf <span style='color:#111;'> 106.04KB </span>","children":null,"spread":false},{"title":"preliminary.pdf <span style='color:#111;'> 97.62KB </span>","children":null,"spread":false},{"title":"part6ch1.pdf <span style='color:#111;'> 368.16KB </span>","children":null,"spread":false},{"title":"part6ch5.pdf <span style='color:#111;'> 198.78KB </span>","children":null,"spread":false},{"title":"part4ch7.pdf <span style='color:#111;'> 310.99KB </span>","children":null,"spread":false},{"title":"part1ch5.pdf <span style='color:#111;'> 250.97KB </span>","children":null,"spread":false},{"title":"part5ch3.pdf <span style='color:#111;'> 363.15KB </span>","children":null,"spread":false},{"title":"part2ch18.pdf <span style='color:#111;'> 345.59KB </span>","children":null,"spread":false},{"title":"part1ch2.pdf <span style='color:#111;'> 306.93KB </span>","children":null,"spread":false},{"title":"part2ch1.pdf <span style='color:#111;'> 211.09KB </span>","children":null,"spread":false},{"title":"part4ch4.pdf <span style='color:#111;'> 207.75KB </span>","children":null,"spread":false},{"title":"part5ch4.pdf <span style='color:#111;'> 270.62KB </span>","children":null,"spread":false},{"title":"part4ch8.pdf <span style='color:#111;'> 253.38KB </span>","children":null,"spread":false},{"title":"part4ch11.pdf <span style='color:#111;'> 264.80KB </span>","children":null,"spread":false},{"title":"part4ch1.pdf <span style='color:#111;'> 156.97KB </span>","children":null,"spread":false},{"title":"part1ch9.pdf <span style='color:#111;'> 285.41KB </span>","children":null,"spread":false},{"title":"part2ch5.pdf <span style='color:#111;'> 248.75KB </span>","children":null,"spread":false},{"title":"part4ch10.pdf <span style='color:#111;'> 253.13KB </span>","children":null,"spread":false},{"title":"part6ch2.pdf <span style='color:#111;'> 216.75KB </span>","children":null,"spread":false},{"title":"part6ch4.pdf <span style='color:#111;'> 219.33KB </span>","children":null,"spread":false},{"title":"part2ch6.pdf <span style='color:#111;'> 339.07KB </span>","children":null,"spread":false},{"title":"part5ch2.pdf <span style='color:#111;'> 208.79KB </span>","children":null,"spread":false},{"title":"part5ch5.pdf <span style='color:#111;'> 328.87KB </span>","children":null,"spread":false},{"title":"part3ch1.pdf <span style='color:#111;'> 350.45KB </span>","children":null,"spread":false},{"title":"part2ch3.pdf <span style='color:#111;'> 381.95KB </span>","children":null,"spread":false},{"title":"part7ch1.pdf <span style='color:#111;'> 140.37KB </span>","children":null,"spread":false},{"title":"part1ch4.pdf <span style='color:#111;'> 206.51KB </span>","children":null,"spread":false},{"title":"part4ch9.pdf <span style='color:#111;'> 168.37KB </span>","children":null,"spread":false},{"title":"part4ch2.pdf <span style='color:#111;'> 237.26KB </span>","children":null,"spread":false}],"spread":false},{"title":"Euler L._An analytical exercise(1776).pdf <span style='color:#111;'> 54.72KB </span>","children":null,"spread":false},{"title":"Euler L._An algebraic problem of finding four numbers, given the products of each of the numbers with the sum of the three others(1862).pdf <span style='color:#111;'> 72.31KB </span>","children":null,"spread":false},{"title":"Introduction to Analysis of the Infinite_Book.I_Euler.djvu <span style='color:#111;'> 1.78MB </span>","children":null,"spread":false},{"title":"Euler L._On amicable numbers(1747).pdf <span style='color:#111;'> 41.65KB </span>","children":null,"spread":false},{"title":"[Euler] FoundationsOfDifferentialCalculus.pdf <span style='color:#111;'> 880.34KB </span>","children":null,"spread":false},{"title":"Euler L._Elements of algebra(1822).djvu <span style='color:#111;'> 18.34MB </span>","children":null,"spread":false},{"title":"Euler L._On magic squares(1776).pdf <span style='color:#111;'> 97.07KB </span>","children":null,"spread":false},{"title":"Euler L._A commentary on the continued fraction by which the illustrious La Grange has expressed the binomial powers(1780).pdf <span style='color:#111;'> 74.11KB </span>","children":null,"spread":false},{"title":"Euler L._A most easy method for finding many very large prime numbers(1778).pdf <span style='color:#111;'> 58.02KB </span>","children":null,"spread":false},{"title":"Euler L._A solution to a problem of Fermat, on two numbers of which the sum is a square and the sum of their squares is a biquadrate, inspired by the Illustrious La Grange(1780).pdf <span style='color:#111;'> 59.53KB </span>","children":null,"spread":false},{"title":"Euler L._Demonstration of a theorem about the order observed in the sums of divisors(1760).pdf <span style='color:#111;'> 81.97KB </span>","children":null,"spread":false},{"title":"Euler L._On a new type of rational and highly convergent series, by which the ratio of the circumference to the diameter is able to be expressed(1779).pdf <span style='color:#111;'> 62.79KB </span>","children":null,"spread":false},{"title":"Euler L._An inquiry into whether or not 1000009 is a prime number(1797).pdf <span style='color:#111;'> 76.83KB </span>","children":null,"spread":false},{"title":"Euler L._On the expansion of the power of any polynomial(1778).pdf <span style='color:#111;'> 87.49KB </span>","children":null,"spread":false},{"title":"Euler L._Observations on a theorem of Fermat and others on looking at prime numbers(1738).pdf <span style='color:#111;'> 56.01KB </span>","children":null,"spread":false},{"title":"Euler L._Observations about two biquadratics, of which the sum is able to be resolved into two other biquadratics(1772).pdf <span style='color:#111;'> 62.85KB </span>","children":null,"spread":false},{"title":"Euler L._The expansion of the infinite product into a single series(1775).pdf <span style='color:#111;'> 66.69KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]