Information Processing in Agriculture.pdf

上传者: hxf19961219 | 上传时间: 2021-05-24 17:00:25 | 文件大小: 2.17MB | 文件类型: PDF
葡萄病害是造成葡萄严重减产的主要因素。所以发展是当务之急

葡萄叶片病害的自动识别方法。深度学习技术

最近在各种计算机视觉问题上取得了令人印象深刻的成就

启发我们将其应用到葡萄病害的鉴定工作中。提出了一种基于集成方法的联合卷积神经网络(CNNs)结构。建议的CNNs体系结构,即UnitedModel,旨在区分

葡萄常见病叶黑腐病和健康的叶子。多个cnn的组合使得提议的UnitedModel能够提取互补的鉴别特征。从而增强了UnitedModel的代表性。UnitedModel已在hold-out PlantVillage数据集上进行了评估,并与几种最新的CNN模型进行了比较。这个论文实验结果表明,UnitedModel在各种评价指标上都取得了最好的性能。UnitedModel的平均验证精度为99.17%,测试准确率98.57%,可作为决策支持工具帮助农民识别葡萄病害。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明