Python数据挖掘入门与实战、带源码

上传者: helinherong_fan | 上传时间: 2021-08-04 16:35:55 | 文件大小: 22.09MB | 文件类型: RAR
本书作为数据挖掘入门读物,介绍了数据挖掘的基础知识、基本工具和实践方法,通过循序渐进地讲解算法,带你轻松踏上数据挖掘之旅。本书采用理论与实践相结合的方式,呈现了如何使用决策树和*森林算法预测美国职业篮球联赛比赛结果,如何使用亲和性分析方法推荐电影,如何使用朴素贝叶斯算法进行社会媒体挖掘,等等。本书也涉及神经网络、深度学习、大数据处理等内容。本书面向愿意学习和尝试数据挖掘的程序员。

文件下载

资源详情

[{"title":"( 46 个子文件 22.09MB ) Python数据挖掘入门与实战、带源码","children":[{"title":"Python数据挖掘入门与实战","children":[{"title":"Code_REWRITE","children":[{"title":"Chapter 11","children":[{"title":"Chapter 11 (Theano and Lasagne).ipynb <span style='color:#111;'> 60.95KB </span>","children":null,"spread":false},{"title":"Chapter 11 (CIFAR).ipynb <span style='color:#111;'> 57.46KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 9","children":[{"title":".ipynb_checkpoints","children":[{"title":"Chapter 9 Authorship Analysis-checkpoint.ipynb <span style='color:#111;'> 19.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"getdata.py <span style='color:#111;'> 3.57KB </span>","children":null,"spread":false},{"title":"Chapter 9 Authorship Analysis.ipynb <span style='color:#111;'> 876.14KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 12","children":[{"title":"extract_posts.py <span style='color:#111;'> 882B </span>","children":null,"spread":false},{"title":"nb_train.py <span style='color:#111;'> 1.97KB </span>","children":null,"spread":false},{"title":"nb_predict.py <span style='color:#111;'> 1.94KB </span>","children":null,"spread":false},{"title":"Chapter 12 (Test load).ipynb <span style='color:#111;'> 1.69KB </span>","children":null,"spread":false},{"title":"CH12 MapReduce Basics.ipynb <span style='color:#111;'> 37.85KB </span>","children":null,"spread":false},{"title":"Chapter 12 (NB Predict).ipynb <span style='color:#111;'> 10.33KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 5","children":[{"title":".ipynb_checkpoints","children":[{"title":"ch5_adult-checkpoint.ipynb <span style='color:#111;'> 13.91KB </span>","children":null,"spread":false},{"title":"ch5_advertisements-checkpoint.ipynb <span style='color:#111;'> 29.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch5_advertisements.ipynb <span style='color:#111;'> 29.28KB </span>","children":null,"spread":false},{"title":"adult_tests.py <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"ch5_adult.ipynb <span style='color:#111;'> 13.91KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 1","children":[{"title":".ipynb_checkpoints","children":[{"title":"ch1_affinity-checkpoint.ipynb <span style='color:#111;'> 13.91KB </span>","children":null,"spread":false},{"title":"ch1_oner_application-checkpoint.ipynb <span style='color:#111;'> 13.47KB </span>","children":null,"spread":false}],"spread":true},{"title":"ch1_oner_application.ipynb <span style='color:#111;'> 13.50KB </span>","children":null,"spread":false},{"title":"affinity_dataset.txt <span style='color:#111;'> 1000B </span>","children":null,"spread":false},{"title":"ch1_affinity_create.ipynb <span style='color:#111;'> 3.46KB </span>","children":null,"spread":false},{"title":"ch1_affinity.ipynb <span style='color:#111;'> 13.78KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 8","children":[{"title":".ipynb_checkpoints","children":[{"title":"CH8 Rewrite-checkpoint.ipynb <span style='color:#111;'> 286.05KB </span>","children":null,"spread":false},{"title":"Sigmoid-checkpoint.ipynb <span style='color:#111;'> 81.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"Sigmoid.ipynb <span style='color:#111;'> 81.03KB </span>","children":null,"spread":false},{"title":"CH8 Rewrite.ipynb <span style='color:#111;'> 286.05KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 3","children":[{"title":".ipynb_checkpoints","children":[{"title":"Basketball Results #2-checkpoint.ipynb <span style='color:#111;'> 41.43KB </span>","children":null,"spread":false},{"title":"Basketball Results-checkpoint.ipynb <span style='color:#111;'> 77.01KB </span>","children":null,"spread":false}],"spread":true},{"title":"Basketball Results.ipynb <span style='color:#111;'> 75.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 6","children":[{"title":"ch6_get_twitter.ipynb <span style='color:#111;'> 17.98KB </span>","children":null,"spread":false},{"title":"ch6_label_twitter.ipynb <span style='color:#111;'> 7.02KB </span>","children":null,"spread":false},{"title":"ch6_classify_twitter.ipynb <span style='color:#111;'> 5.43KB </span>","children":null,"spread":false},{"title":"replicable_dataset.json <span style='color:#111;'> 4.88KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 10","children":[{"title":".ipynb_checkpoints","children":[{"title":"Chapter 10 Image creation 10_02.png-checkpoint.ipynb <span style='color:#111;'> 1.05MB </span>","children":null,"spread":false},{"title":"Chapter 10 (Cluster Types)-checkpoint.ipynb <span style='color:#111;'> 424.56KB </span>","children":null,"spread":false},{"title":"Chapter 10 Clusterer-checkpoint.ipynb <span style='color:#111;'> 63.25KB </span>","children":null,"spread":false},{"title":"Chapter 10-checkpoint.ipynb <span style='color:#111;'> 72B </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 10 Clusterer.ipynb <span style='color:#111;'> 77.08KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 4","children":[{"title":".ipynb_checkpoints","children":null,"spread":false},{"title":"ch4 Affinity Analysis.ipynb <span style='color:#111;'> 48.25KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 7","children":[{"title":"ch7_part2_twitter.ipynb <span style='color:#111;'> 544.19KB </span>","children":null,"spread":false},{"title":"CH7 From Load.ipynb <span style='color:#111;'> 11.49MB </span>","children":null,"spread":false},{"title":"ch7_collect_twitter_data.ipynb <span style='color:#111;'> 482.86KB </span>","children":null,"spread":false}],"spread":true},{"title":"Chapter 2","children":[{"title":"Ionosphere Nearest Neighbour.ipynb <span style='color:#111;'> 125.65KB </span>","children":null,"spread":false},{"title":".ipynb_checkpoints","children":[{"title":"Ionosphere Nearest Neighbour-checkpoint.ipynb <span style='color:#111;'> 125.65KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":false},{"title":"Python数据挖掘入门与实践.pdf <span style='color:#111;'> 8.81MB </span>","children":null,"spread":false},{"title":"Python数据挖掘入门与实践_彩图.pdf <span style='color:#111;'> 2.22MB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • cylj102908 :
    包括了电子书和源码,还有数据,不错,不错!
    2018-01-15

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明