慢特征分析算法

上传者: hehuihuilosa | 上传时间: 2019-12-21 18:50:01 | 文件大小: 11KB | 文件类型: gz
该算法可用于信号处理的多方面,盲源分离,特征提取,模式识别等等

文件下载

资源详情

[{"title":"( 33 个子文件 11KB ) 慢特征分析算法","children":[{"title":"sfa_tk","children":[{"title":"sfa","children":[{"title":"sfa_clearall.m <span style='color:#111;'> 226B </span>","children":null,"spread":false},{"title":"sfa_load.m <span style='color:#111;'> 584B </span>","children":null,"spread":false},{"title":"xp_dim.m <span style='color:#111;'> 310B </span>","children":null,"spread":false},{"title":"sfa_getHf.m <span style='color:#111;'> 2.21KB </span>","children":null,"spread":false},{"title":"sfa2_step.m <span style='color:#111;'> 3.88KB </span>","children":null,"spread":false},{"title":"sfa1_create.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"sfa_step.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"timediff.m <span style='color:#111;'> 898B </span>","children":null,"spread":false},{"title":"sfa2_create.m <span style='color:#111;'> 1.80KB </span>","children":null,"spread":false},{"title":"sfa_execute.m <span style='color:#111;'> 1.52KB </span>","children":null,"spread":false},{"title":"sfa1.m <span style='color:#111;'> 993B </span>","children":null,"spread":false},{"title":"sfa1_step.m <span style='color:#111;'> 2.02KB </span>","children":null,"spread":false},{"title":"eta.m <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"leta.m <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"sfa_clear.m <span style='color:#111;'> 232B </span>","children":null,"spread":false},{"title":"sfa2.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"sfa_save.m <span style='color:#111;'> 308B </span>","children":null,"spread":false},{"title":"expansion.m <span style='color:#111;'> 660B </span>","children":null,"spread":false}],"spread":false},{"title":"demo","children":[{"title":"expansion_demo.m <span style='color:#111;'> 1.66KB </span>","children":null,"spread":false},{"title":"expansion_demo","children":[{"title":"xp_dim.m <span style='color:#111;'> 218B </span>","children":null,"spread":false},{"title":"expansion.m <span style='color:#111;'> 222B </span>","children":null,"spread":false}],"spread":true},{"title":"sfatk_demo.m <span style='color:#111;'> 1.77KB </span>","children":null,"spread":false},{"title":"getHf_demo.m <span style='color:#111;'> 2.58KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 624B </span>","children":null,"spread":false},{"title":"long_dataset_demo.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false}],"spread":true},{"title":"lcov","children":[{"title":"lcov_update.m <span style='color:#111;'> 524B </span>","children":null,"spread":false},{"title":"lcov_clear.m <span style='color:#111;'> 297B </span>","children":null,"spread":false},{"title":"lcov_pca.m <span style='color:#111;'> 1.23KB </span>","children":null,"spread":false},{"title":"lcov_create.m <span style='color:#111;'> 772B </span>","children":null,"spread":false},{"title":"lcov_fix.m <span style='color:#111;'> 646B </span>","children":null,"spread":false},{"title":"lcov_transform.m <span style='color:#111;'> 453B </span>","children":null,"spread":false},{"title":"lcov_clearall.m <span style='color:#111;'> 272B </span>","children":null,"spread":false}],"spread":true},{"title":"README <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false}],"spread":true}],"spread":true}]

评论信息

  • qq_41271487 :
    麻烦问一下,这个代码里的权重向量W是怎么获取呢?
    2019-02-28
  • binghuotonglu :
    很不错,谢谢
    2017-07-04
  • qq_36982758 :
    不要花金币去下,这个程序原作者的page里有,http://people.brandeis.edu/~berkes/software/sfa-tk/
    2017-06-30
  • wy51_rainbow :
    经典算法,Slow Feature Analysis: Unsupervised Learning of Invariances文献里。
    2017-01-04
  • redeem92 :
    慢特征分析,很好的资料
    2016-09-25

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明