视觉机器学习20讲配套仿真代码_前10讲

上传者: gbttxn_1129 | 上传时间: 2023-09-20 07:43:55 | 文件大小: 1.74MB | 文件类型: RAR
该资源包含了K均值学习、KNN学习、回归学习、决策树学习、贝叶斯学习、SVM方法等机器学习等视觉算法在内的详细的matlab代码

文件下载

资源详情

[{"title":"( 73 个子文件 1.74MB ) 视觉机器学习20讲配套仿真代码_前10讲","children":[{"title":"视觉机器学习20讲配套仿真代码_前10讲","children":[{"title":"8、Adaboost","children":[{"title":"Classify.m <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"TrainAndSave.m <span style='color:#111;'> 606B </span>","children":null,"spread":false},{"title":"ionosphere.txt <span style='color:#111;'> 75.02KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"@crossvalidation","children":[{"title":"CatFold.m <span style='color:#111;'> 222B </span>","children":null,"spread":false},{"title":"GetFold.m <span style='color:#111;'> 238B </span>","children":null,"spread":false},{"title":"crossvalidation.m <span style='color:#111;'> 242B </span>","children":null,"spread":false},{"title":"Initialize.m <span style='color:#111;'> 742B </span>","children":null,"spread":false}],"spread":true},{"title":"@tree_node_w","children":[{"title":"get_dim_and_tr.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"tree_node_w.m <span style='color:#111;'> 856B </span>","children":null,"spread":false},{"title":"do_learn_nu.m <span style='color:#111;'> 3.85KB </span>","children":null,"spread":false},{"title":"train.m <span style='color:#111;'> 3.29KB </span>","children":null,"spread":false},{"title":"calc_output.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false}],"spread":true},{"title":"TranslateToC.m <span style='color:#111;'> 452B </span>","children":null,"spread":false},{"title":"@stump_w","children":[{"title":"do_learn_nu.m <span style='color:#111;'> 2.51KB </span>","children":null,"spread":false},{"title":"get_threshold_and_dim.m <span style='color:#111;'> 96B </span>","children":null,"spread":false},{"title":"stump_w.m <span style='color:#111;'> 182B </span>","children":null,"spread":false},{"title":"calc_output.m <span style='color:#111;'> 299B </span>","children":null,"spread":false}],"spread":true},{"title":"RealAdaBoost.m <span style='color:#111;'> 1.19KB </span>","children":null,"spread":false}],"spread":true},{"title":"5、Random Forest","children":[{"title":"satimage.txt <span style='color:#111;'> 231.20KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 2.87KB </span>","children":null,"spread":false},{"title":"test_data.txt <span style='color:#111;'> 27.37KB </span>","children":null,"spread":false},{"title":"satimage.tra <span style='color:#111;'> 513.51KB </span>","children":null,"spread":false},{"title":"train_data.txt <span style='color:#111;'> 54.73KB </span>","children":null,"spread":false},{"title":"srbct.txt <span style='color:#111;'> 978.38KB </span>","children":null,"spread":false},{"title":"runRF.m <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"datas","children":[{"title":"satimage","children":null,"spread":false}],"spread":true},{"title":"RF.mexw32 <span style='color:#111;'> 80.00KB </span>","children":null,"spread":false},{"title":"runRF_demo.m <span style='color:#111;'> 546B </span>","children":null,"spread":false},{"title":"trainData.txt <span style='color:#111;'> 1.13MB </span>","children":null,"spread":false}],"spread":false},{"title":"2、KNN学习","children":[{"title":"main.m <span style='color:#111;'> 1.27KB </span>","children":null,"spread":false},{"title":"cvKnn.m <span style='color:#111;'> 3.49KB </span>","children":null,"spread":false},{"title":"cvEucdist.m <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false}],"spread":true},{"title":"1、K-means学习","children":[{"title":"kmeans_demo1.m <span style='color:#111;'> 2.23KB </span>","children":null,"spread":false},{"title":"city.jpg <span style='color:#111;'> 115.30KB </span>","children":null,"spread":false}],"spread":true},{"title":"4、决策树学习","children":[{"title":"UseC45Tree.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"UseID3Tree.m <span style='color:#111;'> 1.29KB </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"BuildC45Tree.m <span style='color:#111;'> 3.72KB </span>","children":null,"spread":false},{"title":"ID3_Results.png <span style='color:#111;'> 5.62KB </span>","children":null,"spread":false},{"title":"flower_mask.png <span style='color:#111;'> 1.39KB </span>","children":null,"spread":false},{"title":"C45_Results.png <span style='color:#111;'> 5.56KB </span>","children":null,"spread":false},{"title":"flower_test.png <span style='color:#111;'> 253.13KB </span>","children":null,"spread":false}],"spread":true},{"title":"6、贝叶斯学习","children":[{"title":"human.mat <span style='color:#111;'> 427.67KB </span>","children":null,"spread":false},{"title":"background.mat <span style='color:#111;'> 387.18KB </span>","children":null,"spread":false},{"title":"Bayes.m <span style='color:#111;'> 1.92KB </span>","children":null,"spread":false},{"title":"randQ.m <span style='color:#111;'> 662B </span>","children":null,"spread":false}],"spread":true},{"title":"7、EM算法","children":[{"title":"main.m <span style='color:#111;'> 3.25KB </span>","children":null,"spread":false},{"title":"EM_init_kmeans.m <span style='color:#111;'> 486B </span>","children":null,"spread":false}],"spread":true},{"title":"3、回归学习","children":[{"title":"plspcr.m <span style='color:#111;'> 749B </span>","children":null,"spread":false},{"title":"plsra.m <span style='color:#111;'> 370B </span>","children":null,"spread":false},{"title":"plsresult.m <span style='color:#111;'> 282B </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.20KB </span>","children":null,"spread":false},{"title":"stand.m <span style='color:#111;'> 204B </span>","children":null,"spread":false},{"title":"plsiscoeff.m <span style='color:#111;'> 514B </span>","children":null,"spread":false},{"title":"pls.m <span style='color:#111;'> 561B </span>","children":null,"spread":false},{"title":"plsutcor.m <span style='color:#111;'> 274B </span>","children":null,"spread":false},{"title":"data.mat <span style='color:#111;'> 472B </span>","children":null,"spread":false},{"title":"plsrd.m <span style='color:#111;'> 970B </span>","children":null,"spread":false}],"spread":true},{"title":"9、SVM方法","children":[{"title":"svmSim.m <span style='color:#111;'> 2.38KB </span>","children":null,"spread":false},{"title":"svmTrain.m <span style='color:#111;'> 2.92KB </span>","children":null,"spread":false},{"title":"SVM.m <span style='color:#111;'> 1.22KB </span>","children":null,"spread":false},{"title":"kernel.m <span style='color:#111;'> 633B </span>","children":null,"spread":false}],"spread":true},{"title":"10、增强学习","children":[{"title":"qlearn.m <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"global1.m <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"global4.m <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 604B </span>","children":null,"spread":false},{"title":"action_selector.m <span style='color:#111;'> 422B </span>","children":null,"spread":false},{"title":"WS_FTP.LOG <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"global2.m <span style='color:#111;'> 397B </span>","children":null,"spread":false},{"title":"pol_finder.m <span style='color:#111;'> 341B </span>","children":null,"spread":false},{"title":"state_finder.m <span style='color:#111;'> 450B </span>","children":null,"spread":false},{"title":"global3.m <span style='color:#111;'> 399B </span>","children":null,"spread":false},{"title":"jump_learn.m <span style='color:#111;'> 697B </span>","children":null,"spread":false}],"spread":false}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明