与NURBS有关的m程序

上传者: forbril1222 | 上传时间: 2021-05-20 12:00:00 | 文件大小: 32KB | 文件类型: 7Z
NURBS的de-Boor算法、节点插入、节点细化、升阶、降价、轨迹优化匹配组合算法等;轨迹优化匹配组合算法已发表小论文。

文件下载

资源详情

[{"title":"( 91 个子文件 32KB ) 与NURBS有关的m程序","children":[{"title":"zyc-Nurbs","children":[{"title":"DecomposeCurve.m <span style='color:#111;'> 1.38KB </span>","children":null,"spread":false},{"title":"AllBernstein.m <span style='color:#111;'> 419B </span>","children":null,"spread":false},{"title":"Distance4D.m <span style='color:#111;'> 60B </span>","children":null,"spread":false},{"title":"CurvePntByCornerCut.m <span style='color:#111;'> 657B </span>","children":null,"spread":false},{"title":"GetdotFromBspline4.m <span style='color:#111;'> 745B </span>","children":null,"spread":false},{"title":"CurveDerivCpts.m <span style='color:#111;'> 469B </span>","children":null,"spread":false},{"title":"test.m <span style='color:#111;'> 549B </span>","children":null,"spread":false},{"title":"main.m <span style='color:#111;'> 1.09KB </span>","children":null,"spread":false},{"title":"3dCurveBank0.txt <span style='color:#111;'> 363B </span>","children":null,"spread":false},{"title":"DrawBsplinedaoshi.m <span style='color:#111;'> 587B </span>","children":null,"spread":false},{"title":"CurveDerivsAlg2.m <span style='color:#111;'> 510B </span>","children":null,"spread":false},{"title":"element3d.txt <span style='color:#111;'> 212B </span>","children":null,"spread":false},{"title":"MatchOptiCurve2d.m <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"SplitCurve1.m <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"MatchOptiCurve2d_3.m <span style='color:#111;'> 6.18KB </span>","children":null,"spread":false},{"title":"bsplinelength.m <span style='color:#111;'> 1.43KB </span>","children":null,"spread":false},{"title":"MatchOptiCurve2d_2.m <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"CurveKnotIns.m <span style='color:#111;'> 1.37KB </span>","children":null,"spread":false},{"title":"element2d.txt <span style='color:#111;'> 2.56KB </span>","children":null,"spread":false},{"title":"DrawNurbs.m <span style='color:#111;'> 753B </span>","children":null,"spread":false},{"title":"GetdotFromBspline3.m <span style='color:#111;'> 872B </span>","children":null,"spread":false},{"title":"Bernstein.m <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"Draw3dCurveBank.m <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"Kabschbspline3.m <span style='color:#111;'> 2.64KB </span>","children":null,"spread":false},{"title":"FindSpan.m <span style='color:#111;'> 481B </span>","children":null,"spread":false},{"title":"Kabschbspline2.m <span style='color:#111;'> 3.28KB </span>","children":null,"spread":false},{"title":"SubMatchOptiCurve.m <span style='color:#111;'> 3.48KB </span>","children":null,"spread":false},{"title":"DrawBezier.m <span style='color:#111;'> 374B </span>","children":null,"spread":false},{"title":"Bezier3chazhi.m <span style='color:#111;'> 542B </span>","children":null,"spread":false},{"title":"CurveFirstDerivs.m <span style='color:#111;'> 841B </span>","children":null,"spread":false},{"title":"PointOnBezierCurve.m <span style='color:#111;'> 463B </span>","children":null,"spread":false},{"title":"DersOneBasisFun.m <span style='color:#111;'> 1.51KB </span>","children":null,"spread":false},{"title":"Kabschbspline1.m <span style='color:#111;'> 2.65KB </span>","children":null,"spread":false},{"title":"CombineBspline.m <span style='color:#111;'> 4.36KB </span>","children":null,"spread":false},{"title":"FindSpanMult.m <span style='color:#111;'> 612B </span>","children":null,"spread":false},{"title":"MatchingCurve3.m <span style='color:#111;'> 4.68KB </span>","children":null,"spread":false},{"title":"deCasteljau1.m <span style='color:#111;'> 422B </span>","children":null,"spread":false},{"title":"matrix.asv <span style='color:#111;'> 115B </span>","children":null,"spread":false},{"title":"Draw2dCurveBank.m <span style='color:#111;'> 301B </span>","children":null,"spread":false},{"title":"hs_err_pid7852.log <span style='color:#111;'> 22.56KB </span>","children":null,"spread":false},{"title":"CurveDerivsAlg1.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"JointCurve2.m <span style='color:#111;'> 1.00KB </span>","children":null,"spread":false},{"title":"GetdotFromBspline2.m <span style='color:#111;'> 1.73KB </span>","children":null,"spread":false},{"title":"Bezier3chazhi.asv <span style='color:#111;'> 506B </span>","children":null,"spread":false},{"title":"drawbyyourself.m <span style='color:#111;'> 321B </span>","children":null,"spread":false},{"title":"JointCurve4.m <span style='color:#111;'> 1.75KB </span>","children":null,"spread":false},{"title":"3dCurveBank.txt <span style='color:#111;'> 352B </span>","children":null,"spread":false},{"title":"CurvePoint.m <span style='color:#111;'> 593B </span>","children":null,"spread":false},{"title":"MatchOptiCurve3d.m <span style='color:#111;'> 4.08KB </span>","children":null,"spread":false},{"title":"GetdotFromBspline1.m <span style='color:#111;'> 553B </span>","children":null,"spread":false},{"title":"hs_err_pid11760.log <span style='color:#111;'> 21.42KB </span>","children":null,"spread":false},{"title":"matrix.m <span style='color:#111;'> 163B </span>","children":null,"spread":false},{"title":"deBoorBspline.m <span style='color:#111;'> 407B </span>","children":null,"spread":false},{"title":"JointCurve3.m <span style='color:#111;'> 2.34KB </span>","children":null,"spread":false},{"title":"Kabschbezier.m <span style='color:#111;'> 4.46KB </span>","children":null,"spread":false},{"title":"nurbslength.m <span style='color:#111;'> 274B </span>","children":null,"spread":false},{"title":"RefineKnotVectCurve1.m <span style='color:#111;'> 1.15KB </span>","children":null,"spread":false},{"title":"MatchOptiCurve3d_2.m <span style='color:#111;'> 5.67KB </span>","children":null,"spread":false},{"title":"SplitCurve2.m <span style='color:#111;'> 1.61KB </span>","children":null,"spread":false},{"title":"GetDotFromNurbs.m <span style='color:#111;'> 1.35KB </span>","children":null,"spread":false},{"title":"UniPointJointCurve.m <span style='color:#111;'> 1.41KB </span>","children":null,"spread":false},{"title":"DrawBsplinehz.m <span style='color:#111;'> 363B </span>","children":null,"spread":false},{"title":"RatCurveDerivs.m <span style='color:#111;'> 710B </span>","children":null,"spread":false},{"title":"DersBasisFuns2.m <span style='color:#111;'> 1.48KB </span>","children":null,"spread":false},{"title":"2dCurveBank.txt <span style='color:#111;'> 352B </span>","children":null,"spread":false},{"title":"MatchingCurve1.m <span style='color:#111;'> 957B </span>","children":null,"spread":false},{"title":"JointCurve1.m <span style='color:#111;'> 673B </span>","children":null,"spread":false},{"title":"CurvePointPw.m <span style='color:#111;'> 532B </span>","children":null,"spread":false},{"title":"MatchingCurve2.m <span style='color:#111;'> 813B </span>","children":null,"spread":false},{"title":"Joint3dCurve.txt <span style='color:#111;'> 258B </span>","children":null,"spread":false},{"title":"RemoveCurveKnot.m <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"BasisFuns.m <span style='color:#111;'> 1007B </span>","children":null,"spread":false},{"title":"MatchingCurve4.m <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"DegreeElevateCurve.m <span style='color:#111;'> 3.68KB </span>","children":null,"spread":false},{"title":"OneBasisFun.m <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"Joint2dCurve.txt <span style='color:#111;'> 220B </span>","children":null,"spread":false},{"title":"Kabschnotsameu.m <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"DrawBasisFuns.m <span style='color:#111;'> 270B </span>","children":null,"spread":false},{"title":"AllBasisFuns.m <span style='color:#111;'> 517B </span>","children":null,"spread":false},{"title":"DegreeReduceCurve.m <span style='color:#111;'> 3.23KB </span>","children":null,"spread":false},{"title":"JointUniCurve.m <span style='color:#111;'> 2.57KB </span>","children":null,"spread":false},{"title":"myselfdrawbezier.m <span style='color:#111;'> 1.17KB </span>","children":null,"spread":false},{"title":"MatchOptiCurve3d_3.m <span style='color:#111;'> 6.51KB </span>","children":null,"spread":false},{"title":"CurvePntByCornerCutPw.m <span style='color:#111;'> 878B </span>","children":null,"spread":false},{"title":"BezDegreeReduce.m <span style='color:#111;'> 1024B </span>","children":null,"spread":false},{"title":"DersBasisFuns.m <span style='color:#111;'> 1.86KB </span>","children":null,"spread":false},{"title":"RefineKnotVectCurve.m <span style='color:#111;'> 1.13KB </span>","children":null,"spread":false},{"title":"Horner1.m <span style='color:#111;'> 418B </span>","children":null,"spread":false},{"title":"DrawBspline.m <span style='color:#111;'> 814B </span>","children":null,"spread":false},{"title":"Centroidm.m <span style='color:#111;'> 1.03KB </span>","children":null,"spread":false},{"title":"KabschCurve.m <span style='color:#111;'> 2.96KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明