liblinear1.93

上传者: fireguard | 上传时间: 2022-10-23 13:30:30 | 文件大小: 342KB | 文件类型: ZIP
LIBLINEAR is a simple package for solving large-scale regularized linear classification and regression. It currently supports - L2-regularized logistic regression/L2-loss support vector classification/L1-loss support vector classification - L1-regularized L2-loss support vector classification/L1-regularized logistic regression - L2-regularized L2-loss support vector regression/L1-loss support vector regression. When to use LIBLINEAR but not LIBSVM ==================================== There are some large data for which with/without nonlinear mappings gives similar performances. Without using kernels, one can efficiently train a much larger set via linear classification/regression. These data usually have a large number of features. Document classification is an example. Warning: While generally liblinear is very fast, its default solver may be slow under certain situations (e.g., data not scaled or C is large). See Appendix B of our SVM guide about how to handle such cases. http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf Warning: If you are a beginner and your data sets are not large, you should consider LIBSVM first. LIBSVM page: http://www.csie.ntu.edu.tw/~cjlin/libsvm

文件下载

资源详情

[{"title":"( 39 个子文件 342KB ) liblinear1.93","children":[{"title":"liblinear-1.93","children":[{"title":"windows","children":[{"title":"libsvmread.mexw64 <span style='color:#111;'> 11.00KB </span>","children":null,"spread":false},{"title":"predict.mexw64 <span style='color:#111;'> 16.00KB </span>","children":null,"spread":false},{"title":"train.mexw64 <span style='color:#111;'> 59.50KB </span>","children":null,"spread":false},{"title":"train.exe <span style='color:#111;'> 151.50KB </span>","children":null,"spread":false},{"title":"libsvmwrite.mexw64 <span style='color:#111;'> 10.00KB </span>","children":null,"spread":false},{"title":"predict.exe <span style='color:#111;'> 116.00KB </span>","children":null,"spread":false},{"title":"liblinear.dll <span style='color:#111;'> 152.00KB </span>","children":null,"spread":false}],"spread":true},{"title":"matlab","children":[{"title":"libsvmwrite.c <span style='color:#111;'> 2.10KB </span>","children":null,"spread":false},{"title":"predict.c <span style='color:#111;'> 8.10KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 1.72KB </span>","children":null,"spread":false},{"title":"libsvmread.c <span style='color:#111;'> 3.92KB </span>","children":null,"spread":false},{"title":"linear_model_matlab.c <span style='color:#111;'> 3.47KB </span>","children":null,"spread":false},{"title":"linear_model_matlab.h <span style='color:#111;'> 166B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 7.18KB </span>","children":null,"spread":false},{"title":"make.m <span style='color:#111;'> 910B </span>","children":null,"spread":false},{"title":"train.c <span style='color:#111;'> 10.28KB </span>","children":null,"spread":false}],"spread":true},{"title":"tron.cpp <span style='color:#111;'> 5.10KB </span>","children":null,"spread":false},{"title":"tron.h <span style='color:#111;'> 687B </span>","children":null,"spread":false},{"title":"COPYRIGHT <span style='color:#111;'> 1.45KB </span>","children":null,"spread":false},{"title":"Makefile.win <span style='color:#111;'> 903B </span>","children":null,"spread":false},{"title":"predict.c <span style='color:#111;'> 5.33KB </span>","children":null,"spread":false},{"title":"linear.cpp <span style='color:#111;'> 54.07KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 993B </span>","children":null,"spread":false},{"title":"linear.h <span style='color:#111;'> 1.96KB </span>","children":null,"spread":false},{"title":"heart_scale <span style='color:#111;'> 27.02KB </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 18.37KB </span>","children":null,"spread":false},{"title":"linear.def <span style='color:#111;'> 346B </span>","children":null,"spread":false},{"title":"blas","children":[{"title":"blasp.h <span style='color:#111;'> 16.07KB </span>","children":null,"spread":false},{"title":"daxpy.c <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false},{"title":"dscal.c <span style='color:#111;'> 1.01KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 293B </span>","children":null,"spread":false},{"title":"blas.h <span style='color:#111;'> 702B </span>","children":null,"spread":false},{"title":"dnrm2.c <span style='color:#111;'> 1.28KB </span>","children":null,"spread":false},{"title":"ddot.c <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false}],"spread":false},{"title":"python","children":[{"title":"liblinear.py <span style='color:#111;'> 8.18KB </span>","children":null,"spread":false},{"title":"liblinearutil.py <span style='color:#111;'> 7.87KB </span>","children":null,"spread":false},{"title":"Makefile <span style='color:#111;'> 32B </span>","children":null,"spread":false},{"title":"README <span style='color:#111;'> 10.57KB </span>","children":null,"spread":false}],"spread":false},{"title":"train.c <span style='color:#111;'> 8.90KB </span>","children":null,"spread":false}],"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明