上传者: enxiao_liu
|
上传时间: 2025-12-30 22:34:10
|
文件大小: 74KB
|
文件类型: DOC
子阵级空时自适应处理方法是相控阵雷达系统中的核心技术之一,旨在优化雷达的性能,提高目标检测能力和干扰抑制能力。自适应数字波束形成(ADBF)是这一领域的重要组成部分,它通过调整相控阵天线各单元的加权系数来形成最佳波束,以应对不同环境和条件下的信号处理需求。
线性约束最小方差(LCMV)准则下的直接子阵加权(DSW)方法是实现ADBF的一种常见策略,但这种方法在存在阵列误差(如幅度误差和相位误差)的情况下,会导致波束形变,从而降低性能。为了解决这个问题,文章研究了子阵级广义旁瓣对消器(GSLC)结构的窄带ADBF方法。GSLC通过引入辅助阵列,能有效地保持波束形状并保持自适应性能,即使在有阵列误差的条件下。通过均匀子阵划分和归一化处理,GSLC可以实现与静态方向图一致的旁瓣电平,增强了抗干扰能力。
随着相控阵技术的进步,宽带信号在现代雷达系统中的应用日益广泛,因其独特的优点,如更宽的频率覆盖和更高的数据率。因此,文章还探讨了针对宽带信号的空时自适应处理(STAP)方法。STAP能够同时考虑时间和空间的信息,从而更有效地抑制干扰。GSLC的子阵级STAP方法被提出,同样采用了Wiener-Hopf方程、Nickel的常规方法以及Householder变换等三种实现方式,以适应宽带信号和宽带干扰环境。
此外,文章还研究了子阵级主阵列和阵元级辅助阵列相结合的ADBF与STAP实现算法。主阵列用于形成静态和动态波束,而辅助阵列则用于自适应干扰抑制。这种结构允许在不显著增加硬件成本的情况下,提高对抗宽带主瓣干扰的能力。
为了进一步优化子阵级STAP结构,文章提出了一种改进方案,即在辅助阵列中采用子阵级处理,并将辅助阵列布置在主阵列较远的位置。这种方法既可以降低软硬件成本,又能提升对宽带主瓣干扰的抑制效果。该改进方案通过最小方差准则和HA算法两种方法进行了实现,并通过仿真验证了其有效性。
本文深入研究了子阵级空时自适应处理的各种方法,包括窄带ADBF和宽带STAP,为相控阵雷达系统提供了更为灵活和强大的干扰抑制手段。这些方法不仅能够应对阵列误差,还能有效应对宽带信号带来的挑战,对于现代雷达技术的发展具有重要的理论和实践意义。