Python数据分析与应用-源代码和实验数据.rar

上传者: czyujian | 上传时间: 2021-05-11 20:04:53 | 文件大小: 9.18MB | 文件类型: RAR
Python数据分析与应用-源代码和实验数据.rar

文件下载

资源详情

[{"title":"( 91 个子文件 9.18MB ) Python数据分析与应用-源代码和实验数据.rar","children":[{"title":"第7章","children":[{"title":"tmp","children":[{"title":"airline_scale.npz <span style='color:#111;'> 2.37MB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务7.3 使用K-Means算法进行客户分群.py <span style='color:#111;'> 868B </span>","children":null,"spread":false},{"title":"任务7.2 预处理航空客户数据.py <span style='color:#111;'> 1.85KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"air_data.csv <span style='color:#111;'> 13.27MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第5章","children":[{"title":"tmp","children":[{"title":"菜品异常数据识别.png <span style='color:#111;'> 8.99KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务5.2 清洗数据.py <span style='color:#111;'> 7.56KB </span>","children":null,"spread":false},{"title":"任务5.4 转换数据.py <span style='color:#111;'> 2.55KB </span>","children":null,"spread":false},{"title":"任务5.3 标准化数据.py <span style='color:#111;'> 2.48KB </span>","children":null,"spread":false},{"title":"任务5.1 合并数据.py <span style='color:#111;'> 4.49KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"users_info.xlsx <span style='color:#111;'> 86.97KB </span>","children":null,"spread":false},{"title":"meal_order_info.csv <span style='color:#111;'> 112.86KB </span>","children":null,"spread":false},{"title":"meal_order_detail2.sql <span style='color:#111;'> 747.03KB </span>","children":null,"spread":false},{"title":"detail.csv <span style='color:#111;'> 839.84KB </span>","children":null,"spread":false},{"title":"meal_order_detail3.sql <span style='color:#111;'> 739.07KB </span>","children":null,"spread":false},{"title":"meal_order_detail1.sql <span style='color:#111;'> 568.44KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第3章","children":[{"title":"tmp","children":[{"title":"国民生产总值分散情况箱线图.png <span style='color:#111;'> 33.55KB </span>","children":null,"spread":false},{"title":"2000-2017年季度生产总值点线图.png <span style='color:#111;'> 28.77KB </span>","children":null,"spread":false},{"title":"2000-2017年各产业季度生产总值散点图.png <span style='color:#111;'> 28.34KB </span>","children":null,"spread":false},{"title":"2000-2017年季度生产总值散点图.png <span style='color:#111;'> 20.72KB </span>","children":null,"spread":false},{"title":"无法显示中文标题sin曲线.png <span style='color:#111;'> 17.03KB </span>","children":null,"spread":false},{"title":"2000-2017年季度生产总值折线图.png <span style='color:#111;'> 28.78KB </span>","children":null,"spread":false},{"title":"2017年第一季度各产业生产总值占比饼图.png <span style='color:#111;'> 18.53KB </span>","children":null,"spread":false},{"title":"显示中文标题sin曲线.png <span style='color:#111;'> 16.75KB </span>","children":null,"spread":false},{"title":"2000-2017年季度各行业生产总值散点子图.png <span style='color:#111;'> 67.62KB </span>","children":null,"spread":false},{"title":"国民生产总值构成分布直方图直方图.png <span style='color:#111;'> 35.72KB </span>","children":null,"spread":false},{"title":"修改rc参数后sin曲线.png <span style='color:#111;'> 16.91KB </span>","children":null,"spread":false},{"title":"2017年第一季度各产业国民生产总值直方图.png <span style='color:#111;'> 11.48KB </span>","children":null,"spread":false},{"title":"2000-2017年季度各行业生产总值折线子图.png <span style='color:#111;'> 71.66KB </span>","children":null,"spread":false},{"title":"国民生产总值构成分布直方图.png <span style='color:#111;'> 35.72KB </span>","children":null,"spread":false},{"title":"y=x^2.png <span style='color:#111;'> 14.84KB </span>","children":null,"spread":false},{"title":"sincos.png <span style='color:#111;'> 20.57KB </span>","children":null,"spread":false},{"title":"2000-2017各产业国民生产总值箱线图.png <span style='color:#111;'> 11.23KB </span>","children":null,"spread":false},{"title":"默认sin曲线.png <span style='color:#111;'> 16.46KB </span>","children":null,"spread":false},{"title":"2000-2017年季度各产业生产总值折线图.png <span style='color:#111;'> 42.10KB </span>","children":null,"spread":false},{"title":"国民生产总值构成分布饼图.png <span style='color:#111;'> 82.06KB </span>","children":null,"spread":false}],"spread":false},{"title":"code","children":[{"title":"任务3.1 了解绘图基础语法与常用参数.py <span style='color:#111;'> 3.04KB </span>","children":null,"spread":false},{"title":"任务3.2 分析特征间的关系.py <span style='color:#111;'> 6.84KB </span>","children":null,"spread":false},{"title":"任务3.3 分析特征内部数据分布与分散状况.py <span style='color:#111;'> 6.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"国民经济核算季度数据.npz <span style='color:#111;'> 11.15KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第6章","children":[{"title":"tmp","children":[{"title":"聚类结果.png <span style='color:#111;'> 62.76KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务6.4 构建并评价回归模型.py <span style='color:#111;'> 3.98KB </span>","children":null,"spread":false},{"title":"任务6.3 构建并评价分类模型.py <span style='color:#111;'> 4.45KB </span>","children":null,"spread":false},{"title":"任务6.2 构建并评价聚类模型.py <span style='color:#111;'> 3.94KB </span>","children":null,"spread":false},{"title":"任务6.1 使用sklearn转换器处理数据.py <span style='color:#111;'> 5.48KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"abalone.data <span style='color:#111;'> 187.46KB </span>","children":null,"spread":false},{"title":"seeds_dataset.txt <span style='color:#111;'> 9.17KB </span>","children":null,"spread":false},{"title":"cal_housing.data <span style='color:#111;'> 1.98MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第4章","children":[{"title":"tmp","children":[{"title":"meal_order_detail1.csv <span style='color:#111;'> 295.10KB </span>","children":null,"spread":false},{"title":"userInfo.xlsx <span style='color:#111;'> 81.31KB </span>","children":null,"spread":false},{"title":"orderInfo.csv <span style='color:#111;'> 94.37KB </span>","children":null,"spread":false},{"title":"meal_order_detail.csv <span style='color:#111;'> 312.55KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务4.2 掌握DataFrame的常用操作.py <span style='color:#111;'> 7.96KB </span>","children":null,"spread":false},{"title":"任务4.1 读写不同数据源的数据.py <span style='color:#111;'> 4.63KB </span>","children":null,"spread":false},{"title":"任务4.3 转换与处理时间序列数据.py <span style='color:#111;'> 4.14KB </span>","children":null,"spread":false},{"title":"任务4.4 使用分组聚合进行组内计算.py <span style='color:#111;'> 4.37KB </span>","children":null,"spread":false},{"title":"任务4.5 创建透视表与交叉表.py <span style='color:#111;'> 4.06KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"meal_order_info.csv <span style='color:#111;'> 112.86KB </span>","children":null,"spread":false},{"title":"meal_order_detail2.sql <span style='color:#111;'> 747.03KB </span>","children":null,"spread":false},{"title":"meal_order_detail.xlsx <span style='color:#111;'> 896.60KB </span>","children":null,"spread":false},{"title":"meal_order_detail3.sql <span style='color:#111;'> 739.07KB </span>","children":null,"spread":false},{"title":"users.xlsx <span style='color:#111;'> 132.63KB </span>","children":null,"spread":false},{"title":"meal_order_detail1.sql <span style='color:#111;'> 566.12KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第9章","children":[{"title":"tmp","children":[{"title":"sj.csv <span style='color:#111;'> 2.59KB </span>","children":null,"spread":false},{"title":"用户用水事件识别ROC曲线.png <span style='color:#111;'> 11.92KB </span>","children":null,"spread":false},{"title":"sj_final.xlsx <span style='color:#111;'> 12.99KB </span>","children":null,"spread":false},{"title":"water_heart.csv <span style='color:#111;'> 904.41KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"water_heater_nnet.m <span style='color:#111;'> 7.38KB </span>","children":null,"spread":false},{"title":"任务9.3 构建用水行为特征并筛选用水事件.py <span style='color:#111;'> 6.62KB </span>","children":null,"spread":false},{"title":"任务9.4 构建行为事件分析的BP神经网络模型.py <span style='color:#111;'> 2.11KB </span>","children":null,"spread":false},{"title":"任务9.2 预处理热水器用户用水数据.py <span style='color:#111;'> 2.90KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"water_heater_log.xlsx <span style='color:#111;'> 8.39KB </span>","children":null,"spread":false},{"title":"test_data.xlsx <span style='color:#111;'> 15.72KB </span>","children":null,"spread":false},{"title":"water_heater.xls <span style='color:#111;'> 3.02MB </span>","children":null,"spread":false},{"title":"water_hearter.xlsx <span style='color:#111;'> 607.18KB </span>","children":null,"spread":false},{"title":"original_data.xls <span style='color:#111;'> 6.47MB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第8章","children":[{"title":"tmp","children":[{"title":"new_reg_data_GM11.xls <span style='color:#111;'> 5.50KB </span>","children":null,"spread":false},{"title":"new_reg_data.csv <span style='color:#111;'> 1.31KB </span>","children":null,"spread":false},{"title":"new_reg_data_GM11_revenue.xls <span style='color:#111;'> 9.50KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务8.4 使用灰色预测和SVR构建财政收入预测模型.py <span style='color:#111;'> 2.67KB </span>","children":null,"spread":false},{"title":"任务8.3 使用Lasso回归选取财政收入预测的关键特征.py <span style='color:#111;'> 1.14KB </span>","children":null,"spread":false},{"title":"GM11.py <span style='color:#111;'> 763B </span>","children":null,"spread":false},{"title":"任务8.2 分析财政收入数据特征的相关性.py <span style='color:#111;'> 535B </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"data.csv <span style='color:#111;'> 2.04KB </span>","children":null,"spread":false}],"spread":true}],"spread":true},{"title":"第2章","children":[{"title":"tmp","children":[{"title":"savez_arr.npz <span style='color:#111;'> 474B </span>","children":null,"spread":false},{"title":"save_arr.npy <span style='color:#111;'> 480B </span>","children":null,"spread":false},{"title":"arr.txt <span style='color:#111;'> 52B </span>","children":null,"spread":false},{"title":"y=x^2.png <span style='color:#111;'> 1.18KB </span>","children":null,"spread":false}],"spread":true},{"title":"code","children":[{"title":"任务2.1 认识NumPy数组对象ndarray.py <span style='color:#111;'> 5.52KB </span>","children":null,"spread":false},{"title":"任务2.2 认识NumPy矩阵与通用函数.py <span style='color:#111;'> 2.86KB </span>","children":null,"spread":false},{"title":"任务2.3 NumPy数值计算基础.py <span style='color:#111;'> 5.77KB </span>","children":null,"spread":false}],"spread":true},{"title":"data","children":[{"title":"iris_sepal_length.csv <span style='color:#111;'> 600B </span>","children":null,"spread":false}],"spread":true}],"spread":true}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明