GAN局部语义编辑的方法及应用

上传者: cpongm | 上传时间: 2025-04-16 17:31:11 | 文件大小: 27.58MB | 文件类型: PDF
GAN局部语义编辑的方法及应用 GAN(Generative Adversarial Networks)是一种深度学习模型,近年来在图像合成领域取得了非常大的进步。然而,对GAN输出的控制能力仍然有限。为解决这个问题,我们提出了一种简单而有效的方法,可以对目标输出图像进行局部的、语义感知的编辑。这是通过从源图像(也是GAN输出)中借用元素,通过对样式向量的新颖操作实现的。 我们的方法基于StyleGAN模型,它可以生成高质量的图像。我们观察到,StyleGAN在训练过程中学习了语义对象的紧凑表示,因此可以将参考图像的特定对象部分的外观转移到目标图像上。我们的方法不需要外部模型的监督,也不涉及复杂的空间变形操作。 我们的贡献包括: * 我们揭示了StyleGAN生成器中隐藏激活的结构,表明学习到的表示在合成图像中与语义对象大体上是解缠结的。 * 我们利用这种结构开发了一种新颖的图像编辑器,可以将语义部分从参考图像转移到目标合成图像。 我们的方法有很多应用,例如法医艺术,可以将人脸由各种来源合成;室内设计,可以可视化各种设计元素的组合。通过将我们的方法与将自然图像嵌入到StyleGAN的潜在空间中的最新工作相结合,可以设想将其扩展到对真实图像的语义编辑。 在我们的方法中,我们使用StyleGAN模型来生成图像,然后将参考图像的特定对象部分的外观转移到目标图像上。我们通过对样式向量的新颖操作实现了这个过程。 我们的方法的优点包括: * 简单而有效:我们的方法不需要外部模型的监督,也不涉及复杂的空间变形操作。 * 局部语义编辑:我们的方法可以对目标输出图像进行局部的、语义感知的编辑。 * 广泛的应用:我们的方法可以应用于法医艺术、室内设计等领域。 我们的方法的局限性包括: * 依赖于StyleGAN模型:我们的方法基于StyleGAN模型,如果StyleGAN模型不能生成高质量的图像,那么我们的方法也不会很好地工作。 * 只能编辑局部对象:我们的方法只能编辑局部对象,不能编辑整个图像。 我们认为我们的方法可以广泛应用于图像编辑领域,并且可以与其他方法结合使用以实现更多的图像编辑功能。 在未来的工作中,我们计划将我们的方法扩展到对真实图像的语义编辑,并且与其他方法结合使用以实现更多的图像编辑功能。 我们的方法是一种简单而有效的方法,可以对目标输出图像进行局部的、语义感知的编辑。我们的方法基于StyleGAN模型,可以广泛应用于法医艺术、室内设计等领域,并且可以与其他方法结合使用以实现更多的图像编辑功能。

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明