基于Matlab的非支配排序多目标灰狼优化算法(NSGWO)实现及其工程应用

上传者: cpKPnXQQD | 上传时间: 2025-06-24 20:36:30 | 文件大小: 258KB | 文件类型: ZIP
内容概要:本文详细介绍了非支配排序多目标灰狼优化算法(NSGWO)的Matlab实现,涵盖了算法的核心思想、关键技术实现以及丰富的测试函数和工程应用场景。首先,文章解释了NSGWO如何将灰狼的社会等级制度与多目标优化的非支配排序相结合,通过α、β、δ三个等级的狼来引导种群进化。接着,重点讨论了目标函数的向量化操作、种群更新策略、收敛因子的设计等关键技术点。此外,还提供了46个标准测试函数及其评价指标,如超体积(HV)等。最后,通过天线设计、电机设计等多个工程案例展示NSGWO的实际应用价值。 适合人群:具备一定数学建模和优化理论基础的研究人员、工程师,尤其是从事多目标优化研究和技术开发的专业人士。 使用场景及目标:适用于需要同时优化多个相互冲突的目标的场景,如天线设计、机械设计等领域。主要目标是帮助用户理解和掌握NSGWO算法的实现原理,并能够将其应用于实际工程项目中。 其他说明:文中不仅提供了详细的代码实现,还分享了许多实用的小技巧,如矩阵运算优化、并行计算加速等。对于希望进一步改进算法的读者,文章还探讨了NSGWO与其他模型(如LSTM)结合的可能性。

文件下载

资源详情

[{"title":"( 2 个子文件 258KB ) 基于Matlab的非支配排序多目标灰狼优化算法(NSGWO)实现及其工程应用","children":[{"title":"基于Matlab的非支配排序多目标灰狼优化算法(NSGWO)实现及其工程应用.pdf <span style='color:#111;'> 132.25KB </span>","children":null,"spread":false},{"title":"非支配排序多目标灰狼优化算法(NSGWO)的Matlab实现:包含46个测试函数及工程应用案例,以超体积等评价指标为支撑.html <span style='color:#111;'> 201.46KB </span>","children":null,"spread":false}],"spread":true}]

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明