基于可伸缩强化学习的神经结构搜索在癌症深度学习研究中的应用

上传者: cooc89 | 上传时间: 2022-02-01 18:02:38 | 文件大小: 1.87MB | 文件类型: ZIP
癌症是一种复杂的疾病,通过增加收集的数据量和部署的计算能力来帮助人们理解和治疗癌症。因此,越来越需要开发数据驱动的深度学习方法,尤其是用于癌症诊断、检测、预后和预测等各种任务的深度学习方法。然而,尽管最近取得了成功,但为非图像和非文本癌症数据设计高性能的深度学习模型是一项耗时、反复尝试的手动任务,需要癌症领域和深度学习专业知识。为此,我们开发了一种基于强化学习的神经架构搜索,以自动匹配基于深度学习的预测模型开发,用于一类具有代表性的癌症数据。我们开发定制的构建块,允许领域专家结合癌症数据的特定特征。我们表明,我们的方法发现了深度神经网络结构,其可训练参数明显较少,训练时间较短,精确度与手动设计的结构相似或更高。我们在Argonne Leader  ship Computing Facility的Theta超级计算机的多达1024个Intel Knights着陆节点上研究并演示了我们方法的可扩展性。我们开发了可扩展的基于RL的NAS,以自动化一类癌症数据的DNN模型开发。我们设计了一个NAS搜索空间,该空间考虑了特定于非图像和非文本癌症数据的特征。我们在多达1024个Intel Kni

文件下载

评论信息

免责申明

【只为小站】的资源来自网友分享,仅供学习研究,请务必在下载后24小时内给予删除,不得用于其他任何用途,否则后果自负。基于互联网的特殊性,【只为小站】 无法对用户传输的作品、信息、内容的权属或合法性、合规性、真实性、科学性、完整权、有效性等进行实质审查;无论 【只为小站】 经营者是否已进行审查,用户均应自行承担因其传输的作品、信息、内容而可能或已经产生的侵权或权属纠纷等法律责任。
本站所有资源不代表本站的观点或立场,基于网友分享,根据中国法律《信息网络传播权保护条例》第二十二条之规定,若资源存在侵权或相关问题请联系本站客服人员,zhiweidada#qq.com,请把#换成@,本站将给予最大的支持与配合,做到及时反馈和处理。关于更多版权及免责申明参见 版权及免责申明